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Abstract 

Background  Childhood trauma is one of the most extensively studied and well-supported environmental risk 
factors for the development of mental health problems. The human tryptophan hydroxylase 2 (TPH2) gene is one 
of the most promising candidate genes in numerous psychiatric disorders. However, it is now widely acknowl-
edged that neither genetic variation nor environmental exposure alone can fully explain all the phenotypic variance 
observed in psychiatric disorders. Therefore, it is necessary to consider the interaction between the two factors in psy-
chiatric research.

Methods  We enrolled a sizable nonclinical cohort of 786 young, healthy adults who underwent structural MRI 
scans and completed genotyping, the Childhood Trauma Questionnaire (CTQ) and behavioural scores. We identified 
the interaction between childhood trauma and the TPH2 rs7305115 gene polymorphism in the gray matter volume 
(GMV) of specific brain subregions and the behaviour in our sample using a multiple linear regression framework. We 
utilized mediation effect analysis to identify environment /gene-brain-behaviour relationships.

Results  We found that childhood trauma and TPH2 rs7305115 interacted in both behaviour and the GMV of brain 
subregions. Our findings indicated that the GMV of the right posterior parietal thalamus served as a significant media-
tor supporting relationship between childhood trauma (measured by CTQ score) and anxiety scores in our study 
population, and the process was partly modulated by the TPH2 rs7305115 gene polymorphism. Moreover, we found 
only a main effect of childhood trauma in the GMV of the right parahippocampal gyrus area, supporting the relation-
ship between childhood trauma and anxiety scores as a significant mediator.

Conclusions  Our findings suggest that early-life trauma may have a specific and long-term structural effect on brain 
GMV, potentially leading to altered cognitive and emotional processes involving the parahippocampal gyrus 
and thalamus that may also be modulated by the TPH2 gene polymorphism. This finding highlights the importance 
of considering genetic factors when examining the impact of early-life experiences on brain structure and function. 
Gene‒environment studies can be regarded as a powerful objective supplement for targeted therapy, early diagnosis 
and treatment evaluation in the future.
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Background
The human tryptophan hydroxylase 2 (TPH2) gene was 
first discovered in 2003 through animal research [63]. 
TPH2 is a monoamine neurotransmitter that plays a crit-
ical role in modulating various physiological processes 
and has been widely debated as a promising candidate 
gene in many psychiatric disorders [24, 51].

Of numerous candidate TPH2 variants, TPH2 
rs7305115 has been prominently linked with major 
depressive disorder [29, 45, 65], suicide-related behaviour 
[35, 41], and autism spectrum disorder [2, 56]. Recent 
studies have indicated that individuals carrying the G 
allele of the TPH2 rs7305115 polymorphism may be at a 
higher risk of attempting suicide than those with the A 
homozygous genotype [29, 72].

Although the effect of the single TPH2 gene on psy-
chiatric disorders has been found in many studies, it is 
widely acknowledged that environmental risk factors 
may play an important role in the pathophysiology of 
mental illness.

Childhood trauma is one of the most studied environ-
mental risk factors for the development of mental dis-
orders [6]. Several studies [7, 19, 30, 38] have provided 
convincing evidence for a strong association between 
childhood trauma and the onset and persistence of men-
tal disorders. Childhood trauma can affect brain devel-
opment, resulting in atypical cognitive functioning [21], 
decreased memory performance, difficulties with anxiety 
and emotional regulation [43, 48] and subsequent behav-
ioural dysfunction [59]. One study suggested that child-
hood trauma was independently linked with brain gray 
matter volume (GMV) and altered the GMV of brain 
regions critical for cognition and emotion regulation 
[52]. Studies on childhood trauma-related gray matter 
alterations using structural magnetic resonance imaging 
(MRI) have demonstrated that childhood trauma affects 
corticostriatal-limbic morphology [16], the hippocampus 
and amygdala [13, 33, 46, 53], the putamen [27] and fron-
tal cortex [5, 39], and the thalamus and thalamic nuclei 
[49, 67].

Recent findings have suggested that neither common 
genetic variants nor childhood trauma alone sufficiently 
explain the variability of mental disorders [34]. One study 
suggested that mental disorders were caused by gene‒
environment interactions [54]. Hence, to overcome this 
issue, their interaction needs to be considered in psychi-
atric research [9, 37].

Relatively few studies have focused on the interaction 
between childhood trauma and the TPH2 rs7305115 pol-
ymorphism [47, 60, 69], and the conclusions were incon-
sistent. Pearson [47] found no significant interactions 
between TPH2 rs7305115 and childhood trauma in the 
behavioural approach system related to reward processes 

and positive feelings; however, Van and Xu [60, 69] both 
found that TPH2 rs7305115 interacted with childhood 
trauma in influencing depressive disorders and antide-
pressant responses, suggesting that mental disorders 
were influenced by a complex interplay between envi-
ronmental and genetic factors. All these studies focused 
only on interactions in behavioural research; however, 
whether TPH2 rs7305115 and childhood trauma inter-
act in brain structure remains unknown. In this study, we 
enrolled a sizable nonclinical cohort of young, healthy 
Chinese adults who underwent structural MRI scans and 
completed genotyping, the Childhood Trauma Question-
naire (CTQ) and behavioural scores. We hypothesize 
that TPH2 rs7305115 and childhood trauma interact 
not only in the context of behaviour but also regarding 
brain structure (gray matter volume); moreover, TPH2 
rs7305115 and childhood trauma may interact in behav-
iour through brain gray matter volume. The present study 
will contribute to understanding the mechanisms by 
which childhood trauma and TPH2 polymorphism both 
play important roles in the development of psychiatric 
disorders.

Materials and methods
Participants population
In this study, we recruited a total of 800 healthy Chi-
nese Han samples (aged 18–30  years) with MRI, geno-
typing, environment and behavioural data. All subjects 
were right-handed as evaluated by the Chinese edition 
of the Edinburgh Handedness Inventory. Subjects with 
the following conditions were excluded: (1) history of 
abnormal colour discrimination; (2) alcohol or substance 
abuse; (3) smoking habit; (4) severe somatic disorder 
(including heart disease, hypertension, nephritis, diabe-
tes, malignant tumours, genetic diseases and so on); (5) 
pregnancy; (6) MRI contraindications; (7) use of seda-
tive hypnotic medication within the past month or taking 
any medications that affect cortical structures; and (8) 
history of psychosis as evaluated by the Chinese version 
of the MINI-International Neuropsychiatric Interview. 
This study was a part of a multicentre study [68] and was 
approved by the Medical Research Ethics Committee of 
Tianjin Medical University Cancer Institution and Hospi-
tal and Tianjin Medical University General Hospital (No. 
IRB2015-092–01). All participants were provided written 
informed consent in accordance with the Declaration of 
Helsinki.

Questionnaires
Childhood trauma experiences were assessed using the 
Childhood Trauma Questionnaire (CTQ) [8, 61] in Chi-
nese. The CTQ is a self-report questionnaire developed 
by Bernstein as a standardized and adequately validated 
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tool to assess childhood trauma experiences that contains 
28 items designed to assess 5 subscales: physical abuse, 
emotional abuse, sexual abuse, emotional neglect, and 
physical neglect [17, 23, 71]. Each subscale is graded on 
a 5-level scale, with 5–25 points per subscale and 25–125 
points overall.

Participants all completed the Symbol Digit Modali-
ties Test (SDMT), Beck Depression Inventory (BDI-II), 
Spielberger’s State-Trait Anxiety Inventory (STAI) and 
the Tridimensional Personality Questionnaire (TPQ). 
The Chinese versions of all questionnaires were used. The 
details of the questionnaires are as follows:

SDMT is one of the most popular cognitive evalua-
tions of sufficient information processing speed [32]. It 
is a cognitive test consisting of nine symbols, and their 
correspondent numbers range from 1 to 9. The partici-
pants required to write the numbers corresponding to 
each symbol within 90 s, and the final score is the correct 
number filled in within 90 s.

As one of the most acceptable measures of depres-
sive symptoms [66], the BDI is a 21-item self-assessment 
instrument first proposed by Beck et al.[4] and updated 
(BDI-II) in 1996 [3]. In our study, we used the Chinese 
version of the BDI-II to evaluate the psychological and 
physical manifestations of depressive episodes within 
two weeks. All 21 items were individually 0–3 points, and 
the sum of the scores was 0–63 (0–13 for no depression, 
14–19 for mild depression, 20–28 for moderate depres-
sion, and 29–63 for severe depression).

The STAI is the most cited self-report measure of trait 
anxiety and consists of two subscales (total 40 items, 20 
for each subscale) [36]: state anxiety (STAI (S)), meas-
uring how they feel “right now”, and trait anxiety (STAI 
(T)), measuring how they “generally feel”. Items are rated 
from 1 (not at all/almost never) to 4 (very much so/
almost always), and some items are reverse-scored. The 
higher the subscale scores are, the higher the level of anx-
iety is in the related area.

The TPQ is a 100-item, self-administered questionnaire 
for evaluating three components of personality designed 
by Cloninger [12], including three high-grade dimensions 
(novelty seeking (NS), harm avoidance (HA), and reward 
dependence (RD)) and 12 subscales (4 each for NA, HA 
and RD).

Genotyping
DNA was extracted from venous blood samples col-
lected from all participants. Genotyping for the TPH2 
SNP was conducted using the Sequenom Mass ARRAY 
platform (Sequenom, San Diego, CA, USA). The geno-
typing procedures are detailed by Wang [64]. The TPH2 
rs7305115 genotype distribution of the sample was in 

Hardy–Weinberg equilibrium (p > 0.05). The TPH2 geno-
type information was shown in Table 2.

MRI image acquisition and data preprocessing procedure
All MRI data were obtained using a 3.0 MR scanner (3.0 
Tesla MR 750 General Electric, Milwaukee, Wisconsin, 
USA). A brain volume sequence was used to acquire 
sagittal high-resolution 3D T1-weighted images with 
the following parameters: TR/TE = 8.16/3.18  ms, inver-
sion time = 450  ms, FA = 12°, FOV = 256  mm × 256  mm, 
matrix = 256 × 256, slice thickness = 1  mm, no gap, and 
188 slices. During the MRI scan, the participants were 
requested to remain still, not fall asleep, and refrain from 
thinking.

T1WI MR images were preprocessed using CAT12 
software (http://​dbm.​neuro.​uni-​jena.​de/​cat). The pre-
processing procedure was shown in the Additional file 1.

Demographic, behavioural and genetic statistics
The demographic characteristics, behavioural data, and 
genetic imaging data were analyzed using the Statisti-
cal Package for Social Sciences (SPSS, v. 19.0, IBM SPSS 
Statistics, IBM Corporation). A two-sample t-test was 
conducted to determine if there were significant sex dif-
ferences in age, education, CTQ scores and behavioural 
scores. A chi-square test was performed to examine sex 
differences in the genotypic distribution.

Statistical analysis of the interaction between the TPH2 
gene and CTQ
We used a multiple linear regression framework based 
on MATLAB with age, sex, and years of education as 
covariates to investigate the main effect and interaction 
between TPH2 genotype and CTQ score in GMV and 
behavioural scores. Given the multiple comparisons of 
brain subregion GMV properties analyzed as depend-
ent variables, we used the Bonferroni correction. A p 
value < 0.05 was considered statistically significant in the 
regression analysis.

Mediation analysis
The brain subregions were extracted based on the human 
Brainnetome Atlas [18]. A total of 246 brain subregions 
covering the whole brain were analyzed, and these subre-
gions have been detailed by Fan [18].

We used mediation effect analysis based on a three-var-
iable mediation model and moderated mediation analysis 
to identify an observed relationship between the genetic 
and environmental factors (TPH2 rs7305115-CTQ), the 
GMV of brain subregions and the behavioural data based 
on the SPSS macro (http://​www.​proce​ssmac​ro.​org/​index.​
html). In the mediation effects model, we identified CTQ 
scores and TPH2 gene polymorphism as independent 

http://dbm.neuro.uni-jena.de/cat
http://www.processmacro.org/index.html
http://www.processmacro.org/index.html
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variable X, respectively; the GMV of the significant brain 
subregions cluster (showing a significant main effect of 
the CTQ score, or a significant main effect ofthe TPH2 
gene or interaction between CTQ and TPH2) as media-
tion variable M; and the behavioural data (showing a sig-
nificant interaction effect between the CTQ score and 
TPH2) as the dependent variable Y. In the moderated 
mediation model, we first identified the CTQ scores as 
independent variable X, the TPH2 gene polymorphism as 
moderated mediation variable W, the GMV of the signifi-
cant brain subregions cluster (showing a significant main 
effect of the CTQ score, or a significant main effect of the 
TPH2 gene or interaction between CTQ and TPH2) as 
mediation variable M, and the behavioural data (showing 
a significant interaction effect between the CTQ score 
and TPH2) as the dependent variable Y. Then, retaining 
the same mediation variable M and dependent variable Y, 
we redefined the TPH2 gene polymorphism as independ-
ent variable X and the CTQ scores as moderated media-
tion variable W to test its moderated mediation effect. 
We controlled for age, sex, and years of education in all 
the above analyses.

Bias-corrected boots trapping 95% confidence intervals 
(CIs) were calculated for mediation by 5000 bootstrap 
samplings. A significant mediation effect was concluded 
(p < 0.05) if the resulting 95% confidence interval did not 
include zero.

GMV differences between TPH2 genotypes
After the above tests, we used the independent samples 
t-test to analyse the significant differences between TPH2 
genotype subgroups in the GMV of brain subregions and 
the behavioural data showing both a significant inter-
action and mediation effect. Data correction was per-
formed by Bonferroni’s approach (p < 0.05, two-sided) to 
control for type 1 error.

Results
Demographic, genetic and behavioural statistics
Fourteen participants were excluded due to the exclu-
sion criteria (4 with MRI scanning contraindications, 
no subjects taking any medications that affect cortical 
structures), genotyping failure (6 participants), or loss of 
behavioural data (4 participants); 786 (284 male and 502 

female, age range: 18.3–30  years) were included. There 
were no significant sex differences in the distribution of 
genotypes (p > 0.05). We found significant sex differences 
in STAI scores, years of education and TPQ scores (see 
Table  1). A summary of the genetic, behavioural and 
demographic characteristics was shown in Table 2.

Regarding behavioural statistics, the CTQ scores 
ranged from 25 to 75 points, and higher CTQ scores may 
suggest the possibility of childhood trauma. The scores of 
STAI (S) and STAI (T) range from 20 to 57 and 20 to 61, 
respectively, in which the higher the score of subscales 
is, the higher the level of anxiety will be in this area. In 
our study, the sum of the BDI scores of all participants 
was 0–23 points (0–13 for no depression, 14–19 for mild 
depression, 20–28 for moderate depression, and 29–63 
for severe depression). In addition, better information 
processing speed was assessed by higher SDMT scores, 
which ranged from 36 to 107 in our participants. A 
higher score on each subscale of the TPQ indicates a ten-
dency towards that component of personality. Although 
we found some participants with relatively higher CTQ, 
STAI or BDI scores in the study, all subjects were with-
out histories of mental health disorders in the initial 
screening.

Interactions between TPH2 genotype and CTQ 
regarding GMV and behavioural statistics
Significant main effects of CTQ scores were found in 
GMV of RPhG_A28/34 (Right Parahippocampal Gyrus 
area 28/34 (EC, entorhinal cortex)), LSTG_A41/42 (Left 
Superior Temporal Gyrus area 41/42), LSTG_A38l (Left 
Superior Temporal Gyrus lateral area 38), RITG_A20r 
(Right Inferior Temporal Gyrus rostral area 20), RPhG_
A35/36r (Right Parahippocampal Gyrus rostral area 
35/36), RcpSTS (Right caudoposterior superior tempo-
ral sulcus), LPcun_A5m (Left Precuneus medial area 
5(PEm)), LPcun_A5m31 (Left Precuneus area 31 (Lc1)), 
RPcun_A5m31 (Right Precuneus area 31 (Lc1)).

Significant main effects of TPH2 genotype were 
founded in GMV of RITG_A37elv (Right Inferior Tem-
poral Gyrus extreme lateroventral area 37), RITG_A20il 
(Right Inferior Temporal Gyrus intermediate lateral 
area 20), RPPTha (right Posterior Parietal thalamus), 

Table 1  Significant sex difference in the demographic and behaviour data

STAI (S): state inventory of Spielberger’s State-Trait Anxiety Inventory; STAI (T): trait inventory of Spielberger’s State-Trait Anxiety Inventory; TPQ (NS): the novelty 
seeking questionnaire of the Tridimensional Personality Questionnaire; TPQ (NA): the harm avoidance questionnaire of the Tridimensional Personality Questionnaire

Gender (F/M) Years of education STAI (S) STAI (T) TPQ (NS) TPQ (HA)

Female (502) 17.104 ± 1.761 29.805 ± 6.482 33.074 ± 7.125 14.050 ± 4.165 12.554 ± 5.091

Male (284) 16.750 ± 1.903 28.363 ± 6.705 31.750 ± 6.682 12.493 ± 4.032 10.972 ± 5.032

p 0.01 0.003 0.011 0.000 0.000
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RPhG_A35/36c (Right Parahippocampal Gyrus caudal 
area 35/36).

Significant genotype × CTQ score interaction was 
showed in STAI scores, TPQ scores of behaviour scores 
and GMV of ROrG_A14m (Right Orbital Gyrus medial 
area 14), LPrG_A4tl (Left Precentral Gyrus area 4(trunk 
region)), RITG_A20iv (Right Inferior Temporal Gyrus 
intermediate ventral area 20), LcpSTS (Left caudopos-
terior superior temporal sulcus), LCG_A32sg (Left Cin-
gulate Gyrus subgenual area 32), LBG_vCa (Left Basal 
Ganglia ventral caudate), RBG_dCa (Right Basal Ganglia 
dorsal caudate), RPPTha (right Posterior Parietal thala-
mus), ROtha (Right occipital thalamus). The details of 
this analysis were shown in Table 3 and Fig. 1.

Mediation analysis
In the mediation effect analysis, we found significant 
positive direct effects of the CTQ score on the GMV 
of RPPTha (a = 0.097, p = 0.004), the GMV of RPPTha 
on STAI scores (Trait Anxiety Inventory, STAI (T)) 
(b = 0.125, p = 0.001), and the CTQ score on STAI (T) 
scores (c = 0.265, c’ = 0.253, p < 0.001) (see Fig. 2A). Addi-
tionally, we found significant positive direct effects of the 
CTQ scores on the GMV of RPhG_A28/34 (a = 0.067, 
p = 0.034), the GMV of RPhG_A28/34 on the STAI (T) 
score (b = 0.087, p = 0.028), and the CTQ score on the 
STAI(T) score (c = 0.265, c’ = 0.259, p < 0.001) (see Fig. 3). 
The locations of the two significant brain subregions 
were shown in Fig. 4.

We further examined whether this mediation rela-
tionship was moderated by the TPH2 genotype. In the 
moderated mediation model, the TPH2 genotype did 

not show significant moderation in the mediating role 
of GMV in the relationship between CTQ scores and 
STAI(T) scores; however, the TPH2 G carriers group 
showed a tendency to moderate the mediation relation-
ship only in the direct path from the CTQ scores to the 
GMV of RPPTha. To further investigate this result, a 
mediation analysis was performed on the different geno-
types of TPH2. Only in the TPH2 G carriers group did we 
find significant positive direct effects of the CTQ scores 
on the GMV of RPPTha (a = 0.097, p = 0.029), the GMV 
of RPPTha on STAI(T) scores (b = 0.131, p = 0.004), and 
the CTQ scores on STAI (T) scores (c = 0.313, c’ = 0.298, 
p < 0.001) (see Fig. 2B).

We did not find any significant mediation effects in the 
gene (TPH2)-GMV-behaviour pathway or any significant 
moderated mediation effects.

GMV differences between TPH2 genotypes
A significant difference was found only in the GMV 
of RPPTha between the TPH2 genotype subgroups 
(p < 0.001); the GMV of RPPTha of TPH2 A homozygotes 
was larger than that of the G carriers. However, there was 
no significant difference in STAI scores (p > 0.05). See 
Fig. 5.

Discussion
Our study showed that interactions between CTQ score 
and TPH2 gene polymorphism were found regarding the 
anxiety score of behaviour and the GMV of the right pos-
terior parietal thalamus (RPPTha), which was identified 
as an important mediator between the anxiety and CTQ 
scores. Additionally, it was found that this process maybe 

Table 2  Demographic, genetic and behaviour characteristics of the data

CTQ: Childhood Trauma Questionnaire; SDMT: Symbol-digitalModeTest; STAI (S): state inventory of Spielberger’s State-Trait Anxiety Inventory; STAI (T): trait 
inventory of Spielberger’s State-Trait Anxiety Inventory; TPQ (NS): the novelty seeking questionnaire of the Tridimensional Personality Questionnaire; TPQ (NA): the 
harm avoidance questionnaire of the Tridimensional Personality Questionnaire; TPQ (RD): the reward dependence questionnaire of the Tridimensional Personality 
Questionnaire; BDI: Beck Depression Inventory; TPH2: the human tryptophan hydroxylase 2

Demographics Total (N = 786) Mean (range) TPH2 G carriers (N = 564) Mean (range) TPH2 AA 
(N = 222) Mean 
(range)

Age 24.2 (18.3–30) 24.4 (18.3–30) 24.1 (19.1–30)

Gender (female/male) 502/284 365/199 137/85

Years of education 16.9 (12–22) 17.0 (12–22) 16.8 (12–21)

CTQ score 30.0 (25–75) 29.8 (25–64) 30.4 (25–75)

STAI (S) score 29.3 (20–57) 29.1 (20–57) 29.7 (20–50)

STAI (T) score 32.6 (20–61) 32.4 (20–61) 33.2 (20–56)

BDI score 2.8 (0–23) 2.6 (0–23) 3.2 (0–23)

SDMT score 69.0 (36–107) 69.2 (38–107) 68.7 (36–107)

TPQ (NS) 13.5 (2–27) 13.7 (3–25) 13.0 (2–27)

TPQ (NA) 12.0 (1–30) 11.8 (1–30) 12.4 (1–25)

TPQ (RD) 19.7 (9–45) 19.9 (9–45) 19.3 (9–28)
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partly modulated by the TPH2 gene polymorphism. 
Moreover, a significant difference was found in the GMV 
of the RPPTha between TPH2 genotypic subgroups: the 
GMV of the RPPTha in TPH2 A homozygotes was larger 
than that in G carriers. In addition, we found only a main 

effect of the CTQ score on the GMV of the right para-
hippocampal gyrus (RPhG), which was also a significant 
mediator between the CTQ and anxiety scores. Our 
results demonstrate that childhood trauma interacting 
with the TPH2 gene has long-term structural effects on 
brain gray matter volume and anxiety behaviour, and the 
TPH2 gene polymorphism may play a role in the process 
of childhood trauma affecting anxiety behaviour medi-
ated by brain GMV.

Interaction between childhood trauma and TPH2 gene 
polymorphism in the RPPTha
The thalamus is known to play a significant role in fil-
tering sensory information and regulating emotional 
responses by serving as a critical relay station that trans-
mits nociceptive information to the cerebral cortex [22]. 
The thalamus is also a critical core of chronic clinical 
pain [70].

One study demonstrated that some cortico-lim-
bic brain regions related to emotion and reward were 
involved in the overlapping effects of psychiatric diagno-
sis and childhood trauma [28]. Some structural studies 
investigating the possible GMV correlates of childhood 
trauma have revealed significant negative correlations 
between childhood physical/emotional neglect and GMV 
in the thalamus [15] and lower GMV in the thalamus 
with high adverse childhood experiences [49]. Moreover, 
as an indicator of neuronal damage, microglial activation 
in the thalamus has been shown to have a specific effect 
on the brain when exposed to stressors [57]. Childhood 
trauma may have a stress effect on the thalamus by affect-
ing sensory information and emotional responses [73].

Childhood trauma seems to have substantial effects 
on the brain structure of the thalamus. Similar to the 
findings of the previous literature discussed above, we 
observed an interaction between childhood trauma and 
genetic variables (TPH2) in association with subregions 
of the thalamus. The TPH2, the rate-limiting enzyme in 
the biosynthesis of 5-hydroxytryptamine (5-HT) neuro-
transmission, affects the raphe of the mammalian brain-
stem, in which serotonergic neurons project primarily 
into the forebrain, including the thalamus, which medi-
ates perception, cognition and emotional states [62]. A 
previous study on TPH2 in mice found that the density 
of serotonergic fibers in the thalamic paraventricular 
nucleus in TPH2 knockout mice was reduced, promoting 
a reduction in collateral ramifications in thalamic 5-HT 
axonal arbors [40]. Moreover, another study highlighted 
that TPH2 is involved in the control of synaptic plastic-
ity at thalamic inputs to the striatum [10].The TPH2 gene 
has also been found by Gene Analytics molecular path-
way analysis to correlate with the thalamus [31]. In agree-
ment with the literature, our findings suggested that the 

Table 3  Significant brain subregions distribution that showed 
main effects and interaction of genotype and CTQ score in GMV 
and behaviour statistics

CTQ: Childhood Trauma Questionnaire; STAI (S): state inventory of Spielberger’s 
State-Trait Anxiety Inventory; STAI (T): trait inventory of Spielberger’s State-
Trait Anxiety Inventory; TPQ (NA): the harm avoidance questionnaire of 
the Tridimensional Personality Questionnaire; GMV: gray matter volume; 
RPhG_A28/34: right Parahippocampal Gyrus area 28/34 (EC, entorhinal cortex); 
LSTG_A41/42: left Superior Temporal Gyrus area 41/42; LSTG_A38l: left Superior 
Temporal Gyrus lateral area 38; RITG_A20r: right Inferior Temporal Gyrus rostral 
area 20; RPhG_A35/36r: right Parahippocampal Gyrus rostral area 35/36; RcpSTS: 
right caudoposterior Superior Temporal Sulcus; LPcun_A5m: left Precuneus 
medial area 5(PEm); LPcun_A5m31: left Precuneusarea 31 (Lc1); RPcun_A5m31: 
right Precuneus area 31 (Lc1); RITG_A37elv: right Inferior Temporal Gyrus 
extreme lateroventral area 37; RITG_A20il: right Inferior Temporal Gyrus 
intermediate lateral area 20; RPhG_ A35/36c: right Parahippocampal Gyrus 
caudal area 35/36; ROrG_A14m: right Orbital Gyrus medial area 14; LPrG_A4tl: 
left Precentral Gyrus area 4(trunk region); RITG_A20iv: right Inferior Temporal 
Gyrus intermediate ventral area 20; LcpSTS: left caudoposterior Superior 
Temporal Sulcus; LCG_A32sg: left Cingulate Gyrus subgenual area 32; LBG_vCa: 
Left Basal Ganglia ventral caudate; RBG_dCa: Right Basal Ganglia dorsal caudate; 
RPPTha: right Posterior Parietal thalamus; ROtha: right Occipital thalamus
* B stands the beta value

Brain subregions B p

Main effect of CTQ score RPhG_A28/34 1.487 0.027

LSTG_A41/42 − 7.263 0.043

LSTG_A38l 7.319 0.021

RITG_A20r 1.596 0.042

RPhG_A35/36r 2.769 0.047

RcpSTS 3.507 0.019

LPcun_A5m 0.585 0.015

LPcun_A5m31 12.149 0.039

RPcun_A5m31 9.747 0.032

Main effect of genotype RITG_A37elv 28.236 0.046

RPPTha 19.704 0.001

RITG_A20il 90.775 0.024

RPhG_ A35/36c 23.376 0.044

Interaction of genotype × CTQ 
score

ROrG_A14m − 5.124 0.041

LPrG_A4tl − 4.114 0.048

RITG_A20iv − 1.189 0.012

LcpSTS 3.804 0.027

LCG_A32sg − 7.239 0.048

LBG_vCa 3.428 0.048

RBG_dCa 4.167 0.019

RPPTha − 0.156 0.029

ROtha 0.165 0.048

Behaviour scores

Interaction of genotype × CTQ 
score

STAI(S) − 0.089 0.000

STAI(T) − 0.138 0.003

TPQ(NA) − 0.068 0.021
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TPH2 gene and childhood trauma experience may affect 
the GMV of the thalamus and regulate sensory informa-
tion and emotional responses of the thalamus by altering 
the physiological processes of 5-HT in the pathway from 
the raphe of the brainstem to the thalamus [50, 62]. Fur-
ther research is needed to identify the underlying biologi-
cal mechanisms.

In recent years, the method of gene‒environment inter-
action has attracted increasing attention. Clarifying the 
internal relationship between the environment and spe-
cific biologically relevant genes is helpful to better reveal 
and understand the mechanism of disease occurrence 
and development. In other words, findings from studying 
the interaction between genes and the environment can 
help identify subgroups with increased susceptibility to 
psychiatric disorders in the general population who could 
benefit from targeted early intervention [37].

Regulation of childhood trauma on anxiety is mediated 
by GMV
Our study demonstrated that the GMV of the RPPTha 
was a mediator between anxiety scores and childhood 

trauma exposure. Meta-analyses have confirmed that 
thalamic volume reduction characterizes patients with 
schizophrenia [1], and depressed individuals exhibited 
significantly smaller volumes in the bilateral thalamus 
than control individuals, which may be associated with 
dysfunction within subcortical-cortical networks [44]. 
Our present findings provide evidence that childhood 
trauma experience influences the GMV of the thalamus, 
which is reported to be involved in regulating emotional 
responses, and affects social anxiety behaviour mediated 
by the GMV of the thalamus in healthy people. Our find-
ings suggest that childhood trauma has a long-term effect 
on brain structural regions involved in emotion regula-
tion and social anxiety behaviours.

Although the TPH2 genotype did not show signifi-
cant moderation in the mediation relationship above in 
this study’s moderated mediation model, we found that 
TPH2 G carriers status showed a tendency to moderate 
the mediation relationship on the direct path from CTQ 
scores to the GMV of RPPTha. Moreover, the GMV in 
the RPPTha of TPH2 G carriers was significantly smaller 
than that of A homozygotes in our study. No studies have 

Fig. 1  The significant brain subregions distribution of the main effect of genotype, CTQ score and genotype × CTQ score interactions on GMV. 
Different colors represent main effect and interaction on GMV: the red balls represent brain subregions distribution of the main effect of CTQ score 
on GMV; the yellow balls represent brain subregions distribution of the main effect of TPH2 rs7305115 genotype on GMV; the green balls represent 
brain subregions distribution of the genotype × CTQ score interactions on GMV. CTQ: Childhood Trauma Questionnaire; GMV: gray matter volume; 
TPH2: the human tryptophan hydroxylase 2
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been conducted specifically on the TPH2 rs7305115 gene 
polymorphism and the GMV of the thalamus at present. 
One previous study on depression revealed that among 
those with major depressive disorder, G carriers of TPH2 
rs7305115 might be at a higher risk for suicide attempts 
than A homozygotes [29, 71]. A study [60] based on 
three–way interaction among the TPH2 rs7305115, 
the serotonin transporter gene and childhood abuse 
found that the serotonin transporter gene was associ-
ated with increased depression scores after childhood 
abuse only in TPH2 G carriers genotype other than AA 

genotype. Based on our findings, we suggest that the 
TPH2 rs7305115 gene polymorphism might mediate the 
relationship between childhood trauma and anxiety by 
regulating the GMV of RPPTha, especially the reduced 
GMV of G carriers. Genetic variants may effect the brain 
structure, which may support the neurodevelopmental 
hypothesis.

The present study showed that the right parahip-
pocampalgyrus (RPhG) had a main effect of CTQ but no 
interaction with the TPH2 gene. Many studies have dem-
onstrated that childhood trauma experience correlates 
with hippocampal volumes [25, 26, 58, 73]; a meta-analy-
sis [33] of gray matter in childhood trauma also revealed 
that gray matter volume changes have been reported in 
the parahippocampal gyri in whole-brain analysis studies 
[11, 14, 20, 55], a region involved in learning and memory 
[42]. We also found that the GMV of the RPhG mediated 
the relationship between the anxiety score and childhood 
trauma. This finding was interesting despite the lack of 
TPH2 involvement.

Moreover, in our study, we found that only the right 
PPTha interacted in the relationship between TPH2 and 
childhood trauma, and only the right RPhG had a main 
effect on CTQ; the left ones did not, potentially due to 
hemispheric lateralization since one study [1] demon-
strated that the left thalamus was smaller than the right 
in both schizophrenia patients and healthy individuals.

Fig. 2  Significant mediation effect in the environment-brain 
structure-behavior pathway. A The GMV of the right PPTha 
was a significant mediator between CTQ score and STAI score. B The 
GMV of the right PPTha was a significant mediator between CTQ 
score and STAI score only in genotype of TPH2 rs7305115 G carriers 
compared with A homozygous. The direct and total effects were 
labeled with path coefficients and p values. The significant indirect 
effect was labeled with path coefficients and 95% confidence 
intervals. CTQ: Childhood Trauma Questionnaire; STAI: Spielberger’s 
State-Trait Anxiety Inventory; GMV: gray matter volume; PPTha: 
the Posterior Parietal thalamus

Fig. 3  Significant mediation effect in the environment-brain 
structure-behavior pathway. The GMV of the right PhG_A28/34 
was a significant mediator between CTQ score and STAI score. 
The direct and total effects were labeled with path coefficients 
and p values. The significant indirect effect was labeled with path 
coefficients and 95% confidence intervals. CTQ: Childhood Trauma 
Questionnaire; STAI: Spielberger’s State-Trait Anxiety Inventory; GMV: 
gray matter volume; PhG_A28/34: the Parahippocampal Gyrus area 
28/34



Page 9 of 12Li et al. Behavioral and Brain Functions           (2023) 19:22 	

Limitation
This study has several limitations. First, no detailed 
mechanistic explanation is available for the role that 
TPH2 gene polymorphism plays in the relationship 
between childhood trauma and anxiety behavior medi-
ated by the GMV of the thalamus subregion. Further 
investigations are needed to elucidate this mechanism. 
Second, although the sample size of the present study 
was large, the sex and genotype distributions were une-
ven, and we regressed sex as a covariate in the analysis. 
In the future, we will expand the sample size to ensure 
a relatively balanced number of genotypes. Third, some 
participants with high CTQ or behavioural scores in this 
study were not evaluated for posttraumatic stress disor-
der (PTSD), which we will address in the future.

Conclusion
Our findings indicate that childhood trauma experience 
and TPH2 gene polymorphism interact regarding brain 
gray matter volume and play a key role in the pathophysi-
ology of anxiety mediated by the GMV of the thalamus 
subregion (the right posterior parietal thalamus, RPP-
Tha), which is associated with emotional response regu-
lation and filtering sensory information processing. The 
present gene‒environment study advances our under-
standing of behavioural and brain structural psychiatric 

pathogenesis and may provide clinical insights for indi-
viduals with genetic risk and childhood trauma experi-
ence. Our study results suggest that interactions between 
specific genotypes and environmental risks may play a 
role in the development of specific mental disease. Gene‒
environment interaction studies can be considered a 
powerful objective supplement for effective biomarkers 
of targeted therapy, early diagnosis and treatment evalua-
tion in the future.

Fig. 4  The significant brain subregions location as mediator supporting the relationship between CTQ score and STAI score on GMV. Figure 
A showed the location of the right PPTha as mediator supporting the relationship between CTQ score and STAI score on GMV; Figure B showed 
the location of the right PhG_A28/34 as mediator supporting the relationship between CTQ score and STAI score on GMV. CTQ: Childhood Trauma 
Questionnaire; STAI: Spielberger’s State-Trait Anxiety Inventory; GMV: gray matter volume; PPTha: the Posterior Parietal thalamus; PhG_A28/34: 
the Parahippocampal Gyrus area 28/34

Fig. 5  Significant difference on the GMV of the right PPTha 
between TPH2 rs7305115 genotype subgroups. GMV: gray matter 
volume; TPH2: the human tryptophan hydroxylase 2; PPTha: 
the Posterior Parietal thalamus
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