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Abstract 

Many psychiatric and neurodevelopmental disorders are known to be heritable, but studies trying to elucidate the 
genetic architecture of such traits often lag behind studies of somatic traits and diseases. The reasons as to why 
relatively few genome‑wide significant associations have been reported for such traits have to do with the sample 
sizes needed for the detection of small effects, the difficulty in defining and characterizing the phenotypes, partially 
due to overlaps in affected underlying domains (which is especially true for cognitive phenotypes), and the complex 
genetic architectures of the phenotypes, which are not wholly captured in traditional case–control GWAS designs. We 
aimed to tackle the last two issues by performing GWASs of eight quantitative neurocognitive, motor, social‑cognitive 
and social‑behavioral traits, which may be considered endophenotypes for a variety of psychiatric and neurodevel‑
opmental conditions, and for which we employed models capturing both general genetic association and parent‑of‑
origin effects, in a family‑based sample comprising 402 children and their parents (mostly family trios). We identified 
48 genome‑wide significant associations across several traits, of which 3 also survived our strict study‑wide quality 
criteria. We additionally performed a functional annotation of implicated genes, as most of the 48 associations were 
with variants within protein‑coding genes. In total, our study highlighted associations with five genes (TGM3, CACNB4, 
ANKS1B, CSMD1 and SYNE1) associated with measures of working memory, processing speed and social behavior. Our 
results thus identify novel associations, including previously unreported parent‑of‑origin associations with relevant 
genes, and our top results illustrate new potential gene → endophenotype → disorder pathways.
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Introduction
As a species, humans are adept at using communica-
tion (both verbal and nonverbal), mental facilities, social 
interaction abilities and fine motor skills in their every-
day lives. These aptitudes mature during neurodevel-
opment. Some individuals, however, have non-typical 
neurodevelopment, which is associated with cognitive, 
motor, behavioral and/or social-cognitive impairments. 
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Disorders characterized by these impairment are collec-
tively known as neurodevelopmental disorders, and they 
often exhibit high comorbidity [1]. Many of these dis-
orders have a strong genetic component, but they often 
exhibit both genetic and clinical heterogeneity [1–4]. 
Such a high degree of heterogeneity, in turn, encum-
bers studies into the molecular underpinnings of these 
disorders.

One strategy which has been proposed as a means to 
tackle this issue in psychiatric genetics is the use of endo-
phenotypes. Endophenotypes are heritable traits that are 
(typically) convenient to measure and exhibit an associa-
tion with the psychiatric condition; more formally, they 
are said to be heritable traits that are associated with the 
disease in the population, are primarily disease-state-
independent and co-segregate with the disease in families 
(an additional criterion for complex diseases is that endo-
phenotypes found in affected family members be found 
in non-affected family members at a higher rate than in 
the general population) [5]. Endophenotypes can also 
be quantitative, in which case they should be “milder” 
in unaffected relatives of affected individuals and cor-
related with the severity of the disease, and, if this cor-
relation is not due to disease progression or medication, 
then it could suggest that the correlation with the disease 
is by way of disease liability [6]. Many traits that can be 
measured using standardized tests meet these criteria. 
Pertinent to this study is the case of heritable quantitative 
traits, which, in turn, may themselves be composites of 
different measures. For example, it has long been known 
that general intelligence is heritable [7]. Although the 
issue of what the intelligence quotient (IQ) itself meas-
ures is debated, as are the assumptions about the models 
estimating its heritability, the overall evidence from twin 
studies and other family-based studies suggests that a 
large proportion of the variation in IQ between individ-
uals is due to additive genetic effects [8, 9]. Specifically, 
indices from subtests of the Wechsler Intelligence Scale 
for Children also have moderate to high heritabilities 
[10]. Moreover, specific tests designed to measure vari-
ous phenotypic expressions of autism spectrum disorder, 
namely the “Strange Stories” test, which can identify The-
ory of Mind impairments, and the Social Responsiveness 
Scale, which provides a quantitative measure of autistic 
behavioral traits, have both been shown to have modest 
(“Strange Stories”) to high (Social Responsiveness Scale) 
heritabilities [11, 12]. In fact, measures from the Social 
Responsiveness Scale and from the Wechsler Intelligence 
Scale for Children have been successfully used as endo-
phenotypes in studies of autism spectrum disorder (ASD) 
and attention deficit/hyperactivity disorder (ADHD) [13, 
14]. Lastly, both motor skill and motor learning are also 
heritable [15, 16], and motor deficits have been suggested 

as an endophenotype for schizophrenia [17]. In psychia-
try in general, endophenotypes tend to be electrophysi-
ological e.g., electroencephalogram (EEG), eye tracking 
or certain reflexes [18] or behavioral e.g. gaze direction 
towards specific facial features [19]. An example of a rela-
tively highly studied gene → behavioral endophenotype 
→ disease pathway is that of the Calcium Voltage-Gated 
Channel Subunit Alpha1 C (CACNA1C) gene, which is a 
known susceptibility gene for several psychiatric disor-
ders including schizophrenia [20]. A recent study showed 
that deletions in that gene in mice led to behaviors asso-
ciated with psychiatric disorders [21].

Even though many genetic studies of the aforemen-
tioned traits and disorders (and of complex traits and 
diseases, in general) have been conducted, these stud-
ies together have not identified enough associations to 
account for the heritabilities of the investigated traits 
or diseases, a problem known as “the missing heritabil-
ity” [22]. As genome-wide association studies (GWAS) 
become larger, more associations are identified at the 
conventional genome-wide significance threshold. How-
ever, there are other reasons why some associations elude 
the GWAS design, even as sample sizes grow larger: for 
example, there may be phenotypic heterogeneity not 
only across individuals, but also in the sense that dif-
ferent studies may use different definitions for disor-
ders, different ascertainment criteria and/or different 
assessment tools, and, at times, the studied phenotypes 
themselves might reflect several overlapping underlying 
abilities. From the genetic perspective, an important rea-
son is that the common GWAS study design, i.e., using 
only unrelated individuals and modeling only specific 
types of effects, might not capture all the aspects of the 
genetic architecture of a trait [22, 23]. Pertinent to this 
study is the case of the epigenetic phenomenon (i.e., 
a  heritable  phenomenon not caused by changes in the 
DNA sequence itself ) known as parent-of-origin effect 
(POE), whereby the effect of an allele is dependent on its 
parental origin. Family-based genetic studies, where both 
parental DNA and proband DNA are available, are ideal 
for studying these effects. POEs have been implicated in 
many studies of complex traits and diseases [24]. Studies 
have shown that, when these effects do operate but are 
not modeled, they can be missed in traditional GWAS 
designs [25, 26]. Moreover, the same allele may have 
opposite effects when inherited paternally vs. maternally 
[25, 26].

Genomic imprinting is the epigenetic mechanism 
considered the primary underlying cause of POEs [27]. 
Imprinted loci are loci at which the two parental alleles 
are not functionally equivalent (and one of them may 
even be silenced completely). One molecular mechanism 
that could lead to imprinting is methylation (the presence 
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of a methyl group on the DNA nucleotide). Allele-specific 
methylation in differentially methylated regions (DMRs), 
or, in this context, imprinting control regions, can lead to 
differential gene expression depending on the parental 
origin of the allele [27]. Modification of histones (basic 
proteins around which DNA is wound to form nucle-
osomes, a compact package of DNA which makes it pos-
sible for the DNA to fit within the nucleus of the cell) can 
also result in altered gene expression; protein complexes 
that modify histones covalently can lead to repression 
of transcription [28]. POEs may also result from mecha-
nisms other than genomic imprinting, for example, bias 
in transmission of specific types of genetic, such as tri-
nucleotide expansions variation, depending on the sex of 
the parent [29]. Several disorders which involve genomic 
imprinting have strong behavioral and cognitive manifes-
tations. Perhaps the most often-cited examples thereof 
are Prader-Willi syndrome and Angelman syndrome. The 
genes involved in both of these disorders map to chromo-
some 15q11q13, but different genes are involved in the 
two disorders, and they exhibit opposite POEs (paternal 
for Prader-Willi syndrome and maternal for Angelman 
syndrome); similarly, the cognitive and behavioral defi-
cits differ between the two disorders [30]. Most cases of 
these disorders are caused by a deletion of the parentally 
expressed DNA, but some cases are the result of imprint-
ing defects, leading to aberrant methylation patterns [31, 
32]. In the case of complex neurodevelopmental disor-
ders, some notable examples for which POEs have been 
reported include specific language impairment [33, 34], 
dyslexia [35] and autism spectrum disorder [36]. A study 
of 97 traits in mice, where the parent-of-origin of alleles 
could be determined, found that most of them exhibited 
POEs, to which a large component of their heritability 
was attributable. Moreover, the study showed that non-
imprinted loci could also exhibit POEs through interac-
tion with imprinted loci [37]. These examples illustrate 
the importance of considering POEs in studying behavio-
ral and cognitive phenotypes.

Our study aimed to examine both general genetic asso-
ciation as well as parent-of-origin effects, in a deeply 
phenotyped family-based cohort, in which families were 
chosen based on the presence (in at least one parent) or 
absence (in both parents) of a diagnosis of schizophrenia 
or bipolar disorder, and in which DNA from parents and 
children was collected, as well as data on a wide array of 
quantitative neurocognitive, motor, social-cognitive and 
social-behavioral traits [38]. In prior studies which used 
this cohort, several of the investigated traits have been 
shown to differ significantly between children of parents 
with no diagnosis of schizophrenia or bipolar disorder 
and children who had at least one parent with a diagnosis 
of schizophrenia. These included processing speed and 

working memory [39], social responsiveness [40], and 
motor function [41]. Interestingly, these studies did not 
find similar differences between children of parents with 
no diagnosis of schizophrenia or bipolar disorder and 
children who had at least one parent with a diagnosis of 
bipolar disorder.

The main goal of our study is thus twofold: (i) to find 
specific genotype–phenotype associations for the quan-
titative phenotypes from across the aforementioned 
domains, and (ii) to model POEs in addition to general 
association to identify associations that would not be 
captured in case–control GWAS designs. While we do 
not set out to show that the investigated traits are endo-
phenotypes for specific disorders [as mentioned earlier, 
some of them have already been used as endophenotypes 
in previous studies, and they (or similar traits measured 
by other tests) have been shown to be heritable)], they are 
all inherently relevant to neurodevelopment in their own 
right. Moreover, a recent article examining the history 
of the use of endophenotypes in psychiatry proposed to 
expand the definition to include transdiagnostic traits, 
which are not necessarily associated with only one dis-
order [42]. In this context, identifying genetic variants 
influencing neurodevelopmental traits is an important 
endeavor in its own right. To our knowledge, this is the 
first study which examined these four neurodevelopmen-
tal domains in the same cohort, incorporating both gen-
eral GWAS models and POE models.

Materials and methods
Participants
The sample used in this study is part of the Danish High 
Risk and Resilience Study—VIA 7 (hereafter the VIA 7 
study) [38]. The VIA 7 study recruited children aged 7 
and their biological parents. Families were recruited from 
Danish registries on account of having at least one par-
ent with a diagnosis of either schizophrenia spectrum 
psychosis or bipolar disorder (“high risk” families) or as 
control families, in which neither parent had schizophre-
nia or bipolar disorder; however, these disorder were not 
investigated directly in this study. Overall, of the 402 chil-
dren with genetic data included in this study (after quality 
control), 244 come from high risk families (schizophre-
nia: 147; bipolar disorder: 97), and 158 come from control 
families. The sample size varies per marker per analysis, 
as the number of informative children depends on the 
availability of trait data, marker (genotype) data, and, in 
the parent-of-origin analyses, parental genotypes as well. 
We therefore specify the number of informative children 
(probands) for all significant results individually. Regard-
ing parental data, only genetic data were used in the asso-
ciation tests. After the quality control described below, 
there were 261.117 trios, 88.0364 child-mother duos, 
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24.1713 child-father duos, 17.0366 children, 0.352642 
parents, 0.173135 mothers and 0.0495053 fathers (as well 
as 37.9879 parents without children in the dataset), on 
average per marker, as counted with PREMIM [43], with-
out taking siblings into account. These numbers add up 
to ~ 391 (not counting parents without children in the 
dataset), which is the number of independent children 
with genetic data in our sample (11 families included a 
sibling as well).

Phenotypic data
We investigated eight traits derived from different tests 
selected from the comprehensive battery of the VIA 7 
study: MABC (total score from the Danish version of 
Movement Assessment Battery for Children (Movement 
ABC-2), 2nd edition [44]. N.B.: the norm sample for the 
Danish version was from the UK, but it has cross-cultural 
validity [45]); WISC Coding [score (total number cor-
rect) from the Coding subtest of the Danish version of 
the Wechsler Intelligence Scale for Children, 4th edition 
(WISC-IV) [46]]; WISC Symbol Search [score (total 
number correct) from the Symbol Search subtest of the 
Danish version of the WISC-IV]; SSR (score from the 
Strange Stories—Revised [47], based on the total number 
of correct answers to 8 mentalizing questions translated 
into Danish); SRS (T-score from the Danish version of 
the Social Responsiveness Scale (SRS-2) [48], 2nd edi-
tion, completed by the child’s teacher); WISC Arithme-
tic [score (total correct responses) from the Arithmetic 
subtest of the Danish version of the WISC-IV]; WISC 
Letter-Number Sequencing [score (number of correct 
trials) from the Letter-Number Sequencing subtest of 
the Danish version of the WISC-IV]; RIST Index [index 
score from the Danish version of the Reynold’s Intellec-
tual Screening Test (RIST) [49]].

The WISC Arithmetic, WISC Letter-Number Sequenc-
ing, RIST Index and MABC scores were age-standardized 
based on the norms from the manual of each respective 
test. Where norms were not available for some tests or 
subtests e.g., when we used the versions of the WISC-
IV Coding and Symbol Search subtests for children aged 
8 to 16, or when there were no norms (SSR scores), the 
raw scores were rescaled into Z-scores in SPSS v25.0.0.2 
using the mean of the population control subset of VIA 7 
children, who were age-matched to the rest of the cohort. 
The SRS total T-score was not adjusted for age, as this 
score was not associated with age in children aged 7–15 
[12]. More details about these tests can be found in pre-
vious publications on the VIA 7 study [39–41]. The dis-
tributions of the test scores for each trait are shown in 
Fig.  1, which contains histograms and density plots for 
the traits and was generated in R [50] v3.6.3 using the hist 
and density functions. We also calculated the pairwise 

Pearson’s correlation coefficients across the traits in the 
sample of children with genotypes used in this study, 
which are shown in Fig. 2. This was done using the Hmisc 
package v.4.7-0 [51] for R, and the plots were generated 
with the corrplot package v.0.92 for R [52]. Descriptive 
statistics for the traits are found in Table  1, which also 
includes p-values from the Shapiro–Wilk normality test 
as implemented in the shapiro.test function in R.

All traits deviated from normality to some degree. 
However, as the effective sample for the majority of our 
tests depends on the parental genotypes, it varies greatly 
across genetic markers (which are tested individually). 
Therefore, different subsets of children were used for dif-
ferent markers, and it is not practical to try to transform 
the scores so as to force them to have a normal distribu-
tion, when each transformation will not necessarily work 
for more than one marker. Moreover, transforming scores 
in this way would hinder the interpretation of the results, 
as the spaces between scores would have been changed 
unevenly, and, therefore, the interpretation of the effect 
sizes would be problematic. We discuss this at length in 
a previous paper, where we also examined the difference 
normalization had made for our top result [53]. Lastly, as 
we explain below, we used variance components (which 
assume normality) to correct for relatedness among the 
children within a given family. As we had only 11 fami-
lies with more than one child, we investigated the effect 
of removing a child from each family and not modeling 
the variance components, and we saw that it had very 
little impact on our top result [53]; we therefore employ 
the phenotypic scores as detailed above, without an addi-
tional transformation.

Genetic data
We had DNA samples from a subset of the VIA 7 study 
sample, and these were genotyped on the Illumina Psy-
chChip v1-1_15073391_C, which had a loci count of 
603,144 (according to the information lines in the Illu-
mina manifest file for this array). The dataset has been 
described in detail in our previous studies [53, 54]. 
Briefly, the quality control (QC) steps for the samples 
and markers were as follows: initial QC on raw genetic 
data: individuals with low call rates or discordant sex 
information were removed in the first step, as were 
markers with a Gentrain score < 0.3. At this point 18 
individuals had been removed (including one possible 
duplicate sample), and there were 600,282 markers left 
in the dataset. Subsequent QC was done with PLINK 
[55] v.1.90b5.2: individuals and markers with > 1% 
Mendelian errors were removed (N = 10). Genotypes 
with remaining Mendelian errors below this threshold 
were set to missing. Markers with > 5% missing data 
were removed (at this point all remaining individuals 
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had < 5% missing data). Individuals with extreme het-
erozygosity rates (with a threshold of ± 3 SD from the 
sample mean) were removed (N = 21). Genetic ances-
try was estimated in a principal component analysis 
(PCA). The threshold for the exclusion of samples was 
2 SD above or below the VIA 7 mean for either PC1 or 
PC2, using the VIA 7 samples and the CEU, CHB, JPT 
and YRI HapMap samples to create the PC space, as 
described in a published QC protocol [56]. To reduce 
bias from population stratification, individuals of diver-
gent ancestry were removed along with their relatives 
(N = 36), while the rest of the sample clustered with 
the CEU individuals. Individuals who exhibited cryptic 
relatedness or who were less related to biological fam-
ily members than expected from pedigree information 
were removed (N = 13) (the Pi-hat threshold for the 
exclusion of individuals expected to be unrelated was 
0.185). A Hardy–Weinberg Equilibrium (HWE) p-value 
threshold of 1 ×  10–6 was employed for markers, as well 

as a minor allele frequency (MAF) threshold of 1% (in 
founders). Markers with a significant HWE p-value 
based on the above threshold or MAF below 1% were 
excluded. We removed one marker per pair in case of 
pairs of markers with identical positions included in 
the PsychChip, either using PLINK --list-duplicate-
vars suppress-first, if the allele codes matched, other-
wise prioritizing markers with rsIDs. The number of 
individuals removed during these steps was 64, includ-
ing 3 duplicate samples (note that some samples were 
flagged in more than one step, in cases in which sev-
eral checks were performed before the final exclusion 
of samples, namely, after the Mendelian errors check). 
In total, 1094 genotyped individuals and 299,604 auto-
somal markers passed these QC steps, from which we 
further removed 125 indels, for a total of 299,479 auto-
somal markers. Only this dataset of genotyped markers 
was used in this study. Positions in the text and tables 
are in genome build hg19. A minority of markers on the 
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array had positions in the Illumina manifest file which 
differed slightly from the ones in dbSNP for the same 
major build. For that reason we checked all the probes 
from the manifest file for our array for the top hits in 
this study, as for the top hit in our previous study [53]. 
This was done using the UCSC Genome Browser BLAT 
tool, and, where a marker in our top hits had an rsID, 
we checked that the SNP was indeed 1 bp away from the 
probe. Otherwise we checked that the probe mapped to 
a position 1 bp away from the position in the manifest 
file. All probes mapped to a position 1  bp away from 

the position of interest (the direction depended on the 
strand), as expected. One marker among the top hits 
had an incorrect position in the manifest file, but the 
probe mapped to the right place.

Statistical analyses—GWAS stage
In the GWAS stage, we used QTDT (quantitative trans-
mission-disequilibrium test) [57] v2.6.1 for the statistical 
genetic analyses. MERLIN [58] v1.1.2 was used for esti-
mating identity by descent (IBD) scores for each marker 
to be used by QTDT. Three tests were performed for 
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each trait-marker combination: a general (i.e., not a POE 
test) total test of association using all family data (qtdt 
-at), a paternal parent-of-origin total test of association, 
in which only paternally inherited alleles were used (-at 
-op) and a maternal parent-of-origin total test of associa-
tion, in which only maternally inherited alleles were used 
(-at -om). The total association model (as opposed to the 
orthogonal model, which QTDT can also run) is not a 
TDT, and it was used because it is more powerful in the 
absence of population stratification [59]. In this model, a 
combined between/within family component X, or Xpat 
and Xmat in the paternal and maternal tests, respectively, 
denoting the between/within effect on the means, is 
tested. X is the effect size reported for the QTDT analy-
ses in this paper. X is estimated from the data in the full 
model and is fixed to zero in the null model. The likeli-
hoods of these two models are then assessed through a 
likelihood ratio test, resulting in a χ2 statistic, which can 
be used to compute a one-sided p-value from the χ2 dis-
tribution. The tests in this study had one additional free 
parameter in the full model as compared with the null 
model, and so the χ2 statistic was evaluated with 1 degree 
of freedom. We included variance components in both 
models (-wega), incorporating an environmental compo-
nent, a polygenic component and an additive major locus 
component. This allowed for the use of families with 
multiple children, although only 11 families included a 
sibling. Age was taken into account in the scoring of the 
phenotypes, as explained earlier. For all traits, a covari-
ate for sex was added to both the null model and the full 
model.1 The Manhattan plots and the QQ plots were 
generated with the “qqman” R scripts by Stephen Turner 
and Daniel Capurso (with the (major update) version 
from April 19, 2011 for the former type of plot and the 
version from June 10, 2013 for the latter, available from: 
https:// github. com/ steph entur ner/ qqman/ bloqb/ v0.0. 0/ 
qqman.r). Regional association plots were generated with 
LocusZoom [60], after converting marker IDs to rsIDs 
(where possible) using a key from the Illumina website. 
The QTDT output files were tabulated using an in-house 
program (included in the Additional file 1), but the sta-
tistics for the top hits in our study were also examined 
manually using the raw QTDT output, and they matched 
the output of the program.

Statistical analyses—post hoc tests for paternal 
and maternal allelic transmission differences
When a POE is detected with one parent, it does 
not mean that the other parent’s transmissions are 

significantly different. It could be that a child effect is sig-
nificant and appears as such also when looking at pater-
nally inherited alleles or only at maternally inherited 
alleles separately. Therefore, it is necessary to test for a 
difference between these parental allele transmissions. 
This can be achieved by controlling for risk parameters 
other than the POE parameter by including them in both 
the null and the full models. QTDT does not allow a 
free choice of parameters in the null and the full mod-
els, but it incorporates a test for the difference in the 
effects between the paternal and maternal allelic trans-
missions (qtdt -at -ot). In this test, the null model has X, 
and the full model has both X and Xmat. It is not pos-
sible to include Xpat instead of Xmat in the full model 
(to test for a POE when a paternal POE is suspected); 
therefore, as a precaution, we tested both parameteriza-
tions for a known POE using a different program, EMIM 
[43], which allows to model both parental risk parame-
ters (one at a time in this case) in addition to the child 
risk parameter, and saw that the overall likelihood of the 
full model was roughly the same in both cases.2 Thus, we 
used this test to filter out associations that are significant 
in the GWASs when testing paternally inherited alleles 
and maternally inherited alleles separately, but which do 
not show a significant difference from the other parent’s 
transmissions. Note, however, that these models do not 
test for the simple parental effect at the locus of inter-
est or for the type of POE (if the POE is real), and, for 

1 N.B.: The Danish manual for the SRS we used did not include a sex-adjust-
ment for the T-score; hence, we used a covariate for sex for this trait as well.

2 Consider a previously reported association [34, 54] with a paternal POE for 
specific language impairment: rs4280164 allele A having a paternal imprint-
ing parameter  Ip (a multiplicative factor by which the probability of disease 
is multiplied if the child receives a (paternal) copy of the effect allele from 
their father) = 0.255 with P = 2.918 ×  10–8 (1 degree of freedom). In this case, 
the null model has all risk parameters fixed to 1, and in the full model  Ip is 
freely estimated; the two models are assessed using a likelihood ratio test. 
As the EMIM software (43) (used in the original study) allows many param-
eterizations, it is also possible to include a free  R1 parameter (the factor by 
which the disease risk is multiplied if the child has a single copy of the effect 
allele, and assuming that the risk from the child’s having two risk alleles 
is  R2 =  R1

2) in both the null and full models and a free  Ip parameter only in 
the full model. This results in a χ2 of 28.752840302, P = 8.22 ×  10–8 (1 degree 
of freedom), suggesting that the paternal POE is still significant even when 
allowing for a child effect. Importantly, even when estimating the maternal 
imprinting parameter,  Im (a multiplicative factor by which the probability of 
disease is multiplied if the child receives a (maternal) copy of the effect allele 
from their mother), instead of  Ip, at the same locus (with  R1), the likelihood 
of the full model here provides very similar evidence of association (χ2 of 
28.752840295436), although the parameter estimates are different. Similarly, 
even if we do not make the assumption that  R2 =  R1

2 (i.e., we freely estimate 
both  R1 and  R2 in the null and full models), we still obtain very similar likeli-
hoods, resulting in χ2 = 25.88917562832 when estimating  Ip in the full model, 
and χ2 = 25.889147279256 when estimating  Im in the full model (in both cases 
including free  R1 and  R2 in both the null and full models), both obtaining 
P = 3.62 ×  10–7 (1 degree of freedom). We believe that QTDT is doing some-
thing similar with its test of allelic difference, and that a test of either combi-
nation can be used to determine the presence of a POE, even though QTDT 
always models the maternal POE effect parameter as the additional one.

https://github.com/stephenturner/qqman/bloqb/v0.0.0/qqman.r
https://github.com/stephenturner/qqman/bloqb/v0.0.0/qqman.r
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that reason, we only use them to test for the presence of 
a POE and not for effect estimation; we always report 
the effect of the allele from a test in which only Xmat or 
Xpat are included without X in the full model. Lastly, it 
should be noted that a POE may be significant with both 
paternal and maternal transmissions separately and there 
may still be a significant difference between them, if the 
association trends are discordant across both paren-
tal transmissions (i.e., the same allele may increase the 
score significantly when inherited from the mother but 
decrease it significantly when inherited from the father, 
or vice versa).

The power and effective sample size of a QTDT analysis
The power of a QTDT analysis depends on several fac-
tors, including: the marker allele frequencies, the effect 
size, the linkage disequilibrium between the marker and 
the quantitative trait locus, the number of child geno-
types in the analysis and the parental genotypes. Stud-
ies which evaluated family-based association methods 
used simulations of models with the above parameters to 
estimate the power of those methods. For dichotomous 
traits, for example, 300 case-mother duos offered rea-
sonable power for detection of child genetic effects [61], 
when the effects were  R1 = 1.5 and  R2 = 2.25 (see second 
footnote for an explanation of the parameters), the base-
line risk was 0.1, the significance level was 0.05, and the 
risk allele frequency was 0.3. When strong POEs operate 
and are included in the model, some methods achieved 
power of ~ 90% with as few as 100 case-parents trios 
[62], with  Ip = 2.5 or  Im = 2.5, a significance level of 0.05, 
a baseline risk of 0.05 or 0.01 and a risk allele frequency 
of 0.3 or 0.1, for 20% and 80% of the population, respec-
tively. With regards to quantitative traits, as relevant to 
this study, we considered published reports of simula-
tions estimating the power of various QTDT models. For 
example, in the original QTDT paper, assuming a maxi-
mum D’,  h2 of 0.1, a risk allele frequency of 0.5, a signifi-
cance level of 0.001 and including parental genotypes, a 
sample of 480 children (families with a sibship of 1 and 
parental genotypes available) resulted in a power esti-
mate of 97.4% [57]. In another study, a power of 74% was 
achieved with a sample size of 200,  h2 of 0.1, and a risk 
allele frequency of 0.3 [63]. We can translate the effects 
of an allele into proportion of variance explained (PVE) 
using the following formula, taken from the supplemen-
tary note of a previous study [64]:

where β is the effect size, SE(β) is the standard error of β, 
MAF is the minor allele frequency of the marker (we used 

PVE =

[

2 × β2
× MAF × (1−MAF)

]/[

2 × β2
× MAF × (1−MAF) + SE(β)2 × 2 × N × MAF × (1−MAF)

]

,

the MAF in founders), and N is the sample size (we used 
the number of probands). We do this for the top results 
of our analyses. One further point needs to be taken into 
consideration with regards to the current set of analyses: 
the power estimates from the literature are for the QTDT 
orthogonal model. In the absence of population stratifi-
cation (as is the case in our study), the total association 
model can be used, and, all other things being equal, this 
model has greater power than the orthogonal model [59].

Regarding the sample sizes in the various tests, for the 
general test, all children who had non-missing genotypes 
and IBD information for a given marker and non-missing 
phenotypes were used in the test for that marker. In the 
POE tests, two groups of children are included: (i) chil-
dren whose both parents are genotyped and where one 
parent is homozygous, or whose mother and father have 
different genotypes (in addition, when paternal parent-
of-origin effects are tested, the father must be heterozy-
gous and, when maternal effects are tested, the mother 
must be heterozygous), and (ii) all children with at least 
one homozygous parent, even if the other parent has a 
missing genotype [65]. This may reduce the sample size 
based on parental genotypes, which is why we report the 
number of informative probands (probands who meet all 
the above criteria (for the general test, and, where appli-
cable, the additional criteria for the POE tests) for each 
association in the top results.

Statistical analyses—correction for multiple testing 
and quality measures for GWAS results
We employed the following strategy for correction for 
multiple testing in this study: in the GWASs, we present 
all the associations that met the following two criteria: 
(i) they pass the conventional genome-wide signifi-
cance threshold (P ≤ 5 ×  10–8), (ii) for POE associations, 
they have P ≤ 0.0008 in the test of difference between 
paternal and maternal alleles, which was calculated as 
the conventional threshold (0.05) Bonferroni-corrected 
for the number of post hoc tests for POE associations 
which met the first criterion (n = 63). We then prior-
itize associations that, in addition to meeting the above 
two criteria, also meet the following criteria: (iii) they 
have a p-value (in the GWAS) equal to or below the 
conventional significance threshold (0.05) Bonferroni-
corrected for the actual number of tests performed 
across all GWASs (n = 299,479 × 24), i.e., P ≤ 7 ×  10–9; 
and (iv) at least 30 children had the minor allele for 

the associated marker (N.B.: this is not the same as the 
number of informative probands for QTDT, but rather 
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it means that at least 30 children in the sample had the 
minor allele for the marker in question; while this does 
not guarantee that a specific number of children in a 
given test had the allele (as this also depended on the 
factors explained earlier), it could highlight associa-
tions for which the effect size is less likely to be biased 
due to one of the alleles being relatively rare). Associa-
tions surviving all four criteria are discussed in more 
detail in the Results section. For these associations, we 
also repeated the relevant association test while adding 
a covariate for the high risk status (HRS) of the fam-
ily (that is, a dummy variable (0/1) for whether the 
child is from a family with a parent with schizophrenia 
or bipolar disorder, or from a family in which neither 
parent has either of these diagnosis). Additionally, we 
used EMIM v3.22 [43], a program for multinomial fam-
ily-based genetic association models, to test for asso-
ciation between the top results (Table 2) and the HRS 
as a binary outcome. We used a model for child trend 
analysis [61] in which the factor by which the risk of 
disease is multiplied when the child has two risk alleles 
is constrained to be the square of the risk from having 
one risk allele, or, using the aforementioned notation, 
 R2 =  R1

2. In this analyses we used both case and control 
family subsets, but we did not use controls without par-
ents, since EMIM does not distinguish between con-
trols and individuals with an unknown disease status 
(which means that parents, who by definition have an 
unknown HRS, might be used as controls if the child 
does not have genetic data for a given marker). The 
p-values for this test are derived from the χ2 distribu-
tion with one degree of freedom (since only one risk 
parameter was freely estimated in the full model), and 
the test statistic comes from twice the difference in the 
log-likelihoods of a null model (in which the multipli-
cative risk parameter is fixed to 1) and a full model, in 
which it is estimated from the data.

QTDT does not output standard errors (SEs) for the 
estimates it computes. In order to obtain SEs for the 
observed effect in the top associations in our results we 
used the following approach: using the χ2 statistics 
from the QTDT output, we calculated the error as 
SE =

√

(

X2
/

χ2
)

 , where X is the effect size from QTDT. 
This is an approximation of the SE, because it is calcu-
lated from a Wald statistic, whereas QTDT uses a likeli-
hood ratio test for two nested models which differ by 
the presence of the effect of the genetic variant, but 
these two methods are at least asymptotically equiva-
lent [66]. Lastly, the genomic inflation factor was calcu-
lated for each GWAS in R using the χ2 statistics from 
the QTDT output directly (as QTDT rounds the p-val-
ues themselves in the output) as follows: the median of 

the observed χ2 distribution from each GWAS divided 
by qchisq(0.5, 1).

Functional annotation of variants and genes
For functional annotation of variants, we used the eQTL-
Gen [67] portal and the GTEx V8 portal [68] for finding 
expression quantitative trait locus (eQTL) associations 
and PhenoScanner [69] for finding DNA methylation and 
histone modification associations for the associations 
meeting our four study-wide criteria for significance. For 
gene-level annotation we used VarElect [70], which ranks 
genes based on their association with free text keywords 
using the GeneCards [71] database.

Results
Across all 24 GWASs, 88 associations achieved genome-
wide significance (P ≤ 5 ×  10–8), of which 25 were high-
lighted in the general test and the rest were highlighted 
in the POE tests. Additional file 2: Fig. S1 shows Manhat-
tan plots for all 24 GWASs, and Additional file 3: Fig. S2 
shows the corresponding QQ plots. Across all analyses, 
the genomic inflation factor ranged from 0.967 to 1.077 
(with a mean value of 1.008 and a standard deviation of 
0.024). Of the POE associations among the aforemen-
tioned 88 associations, only 23 were significant in the test 
of difference between paternal and maternal alleles after 
correction for multiple testing (Methods), and the rest 
were therefore excluded from downstream analyses. The 
48 remaining associations are shown in Table 2.

Of the 48 associations that were genome-wide signifi-
cant and, where applicable, showed a significant differ-
ence between paternal and maternal alleles, only 3 met 
our extra conditions pertaining to the study-wide sig-
nificance level and a minimum number of 30 probands 
with the minor allele. Regional association plots for 
these 3 markers are shown in Fig. 3. We employed these 
extra criteria to identify more robust associations, espe-
cially because very rare alleles could lead to biased effect 
sizes. Of the 3 associations meeting all four criteria, 2 
were with the WISC Arithmetic score and were high-
lighted in the general test and the remaining association 
was with the SRS score and showed a maternal POE. 
Two of these associations were with intragenic variants: 
rs214831 (general test, associated with WISC Arithme-
tic) in Transglutaminase 3 gene (TGM3) and rs7604835 
(maternal POE test, associated with SRS) in the Cal-
cium Channel, Voltage-Dependent, Beta 4 Subunit gene 
(CACNB4). Marker rs214831 was strongly associated 
with the expression of the gene it was located in, namely, 
TGM3, on eQTLGen (P = 5.72 ×  10–34), whereby the A 
allele was associated with higher expression of the gene; 
in our study, the effect allele (G) was associated with a 
lower test score, suggesting that lower expression would 
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Fig. 3 Regional association plots for associations surviving all four statistical quality criteria (Methods). a rs6117457 (general test, WISC Arithmetic); 
b rs6117457 (general test, WISC Arithmetic); c rs7604835 (maternal POE test, SRS)
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be associated with a lower score. It was also associated 
with the expression of PTPRA in the basal ganglia on 
GTEx (P = 0.000022), with allele G being associated with 
lower expression. This marker remained at least nomi-
nally significant when adding a covariate for high risk 
status (i.e. for whether the child comes from a high risk 
family or a control family) to the model (P = 0.0312). 
Marker rs7604835, which showed a maternal POE in our 
study, was associated with multiple DNA methylation 
and histone modification sites on PhenoScanner (mini-
mum P = 1.19 ×  10–45), based on evidence from two dif-
ferent studies [72, 73]. This provides further support for 
the association with a POE at this locus. This marker 
remained genome-wide significant when adding a covari-
ate for high risk status (P = 2 ×  10–9). The last association 
which met all four criteria, namely, between rs6117457 
and WISC Arithmetic in the general test, did not impli-
cate any protein-coding gene, and we could not find any 
relevant prior association with it in the literature or func-
tional databases. This marker did not remain significant 
when adding a covariate for high risk status (P = 0.0765). 
Translating the effects of the top markers into PVEs, we 
get: 0.078, 0.08 and 0.11 for rs6117457, rs214831 and 
rs7604835, respectively. The associations adjusted for 
HRS were in the same direction as before in all cases. It 
should be noted, however, that the interpretation of the 
models with the covariate for HRS can be difficult: both 
WISC Arithmetic and SRS are associated with the child’s 
schizophrenia family status in the VIA 7 study [39, 40]; 
since the covariate in this case may imply some genetic 
predisposition to schizophrenia, a disorder which is 
genetically correlated with cognitive traits [74], the same 
SNP could have some association with both the psychiat-
ric disorder and the phenotype of interest. Furthermore, 
both schizophrenia and bipolar disorder are complex, 
meaning they have both genetic and environmental risk 
factors [75, 76]. Thus, the high risk status of the family, 
determined by the presence of a psychiatric diagnosis in 
one of the parents, is influenced both by genetic factors 
and environmental factors; the parental genetic factors 
influence both the child’s genetics (the exposure) and 
the high risk status of the family (the parent’s illness and 
potential covariate), which could influence the outcome 
in the child (the investigated trait). Similarly, environ-
mental factors, which may be unmeasured (or external 
factors in general e.g., parental IQ), could influence both 
the high risk status of the family and the investigated trait 
in the child. In this scenario, adjusting for the covariate 
may reduce bias from possible confounding but intro-
duce collider bias. A further complication would be the 
fact that most of our tests were for POEs, which limit the 
genetic causal path but not the causal path of the high 
risk status on which families were ascertained in this 

study. We therefore tested whether these markers were 
themselves associated with the high risk status as the 
outcome; none of the markers in Table 2 were associated 
with it after Bonferroni correction for multiple testing, 
and the top three markers were not nominally associated 
even before correction. Thus, if, for these markers, the 
high risk status of the family is not associated with the 
genetic exposure, then this eliminates both the potential 
confounding and potential collider bias from the model, 
even if HRS is not included as a covariate. Even though 
the high risk status refers to the parent and not the child’s 
phenotype, this lack of association could suggest that the 
traits highlighted in Table 2 might not be useful endophe-
notypes for schizophrenia or bipolar disorder, but might 
nonetheless be associated with other disorders.

Most of the associated markers in Table 2 (29 out of 48) 
fall within protein-coding genes. In total, 15 unique genes 
are implicated by at least one genome-wide significant 
association [meeting criteria (i) and, where relevant, (ii)] 
with a variant within them: ANKS1B, ATP11A, CACNB4, 
CPLX2, CSMD1, EFCAB1, FRK, KIF13B, PRKCE, SIRPA, 
SYNE1, TGM3, TMEM2, TSACC  and ZSWIM6. Given 
that the associations in Table 2 were with the Arithme-
tic and Symbol Search subtests of the WISC, the SRS and 
the RIST, we used the following terms together with the 
gene names when running the VarElect analysis: autism 
OR "working memory" OR behavior OR communication 
OR intelligence OR "processing speed" OR "Wechsler 
Intelligence Scale for Children" OR "Reynolds Intellec-
tual Screening Test" OR "Social Responsiveness Scale" 
OR schizophrenia OR "bipolar disorder". The last two 
terms were added because they represent the disorders 
based on which the VIA sample had been ascertained. 
Fourteen out of the fifteen genes were directly associated 
with at least one of the terms (i.e., the gene’s GeneCard 
contained the term), with the average number of associ-
ated terms per gene being 4.43 (± 2.41). Two genes were 
associated with 8 terms, the highest number of terms any 
one gene was associated with: Ankyrin Repeat and Sterile 
Alpha Motif Domain-containing Protein 1B (ANKS1B), 
and Synaptic Nuclear Envelope Protein 1 (SYNE1). Addi-
tional file 4: Table S1 lists all direct associations between 
the terms and the genes and a discussion of the scores. 
The gene with the highest VarElect score was CUB And 
Sushi Multiple Domains 1 (CSMD1), and the gene with 
the highest average disease causing likelihood was the 
aforementioned CACNB4.

Discussion
Our study investigated eight neurocognitive, motor and 
social-cognitive and social-behavioral functions using 
a family-based GWAS design, including a general asso-
ciation test as well as tests of parent-of-origin effect tests. 
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We have identified 48 genome-wide significant associa-
tions, of which 3 met our study-wide significance thresh-
old. Our results highlighted several protein-coding genes, 
some of which have been implicated in prior genetic 
analyses of relevant phenotypes.

Two genes were highlighted through associations 
which met all four of our significance criteria: TGM3 
and CACNB4. The association with TGM3 was further 
supported by the marker’s being an eQTL for the gene. 
This gene is involved in terminal epidermal differentia-
tion and has been implicated in some cancers [77, 78]. 
In our study, the marker in this gene was associated with 
a measure of working memory. Interestingly, previous 
studies have found relevant associations between the 
gene and related phenotypes: a study of the RNA blood 
transcriptome of patients with Alzheimer’s disease (AD), 
a disease which involves severe memory impairments, 
found that the largest expression fold change among dif-
ferentially expressed genes across AD cases and controls 
was with TGM3 [79]. Genes of the same family have been 
implicated in several neurodegenerative diseases [80]. 
Also of note, the associated marker in our study was also 
a brain eQTL for PTPRA, a gene which is important for 
hippocampal neuronal migration; mice deficient for the 
PTPRA protein exhibit impairments in learning and 
short-term memory [81]. The association between social 
responsiveness (SRS) and CACNB4 was with a mater-
nal POE. This marker was also associated with methyla-
tion and histone modifications sites, providing further 
support for a POE. The gene encodes a member of the 
beta subunit family of voltage-dependent calcium chan-
nels, and it belongs to a family of genes which has been 
implicated in several psychiatric and neurodevelopmen-
tal disorders, including autism spectrum disorder, across 
many studies [82]. The subunit encoded by CACNB4, 
specifically, is highly expressed in the brain and is prom-
inent in the cerebellum [83]. A recent study found that 
a pathogenic missense variant in this gene resulted in a 
severe neurodevelopmental impairment which included 
intellectual disability, language impairment, movement 
impairment and seizures [84]. When adding a covariate 
for high risk status to the statistical models for the top 
associations, we observe that it either slightly improved 
the association (with SRS, maternal POE test) or reduced 
it drastically (with WISC Arithmetic, general test). 
Whether or not it is appropriate to include this covari-
ate in the model depends on the causal paths between 
the genetic variant, the trait, and the covariate, which 
are complex and not known. Hence, the interpretation of 
these post hoc tests should be done with caution.

Among the other genes in Table  2, three genes were 
highlighted in the functional annotation either as hav-
ing the highest VarElect score or as being associated 

with the largest number of terms: CSMD1, ANKS1B and 
SYNE1. CSMD1 is of particular interest because it has 
been implicated in schizophrenia [85–87]. Interestingly, 
in our study, this gene was implicated through markers 
associated with a measure of working memory; a study 
of this gene  reported that a schizophrenia risk  variant 
in CSMD1 was associated with spatial working memory 
[88]. This could illustrate the effect of a genetic variant 
on an endophenotype for schizophrenia. In this con-
text it is also important to note a proposal to redefine 
the notion of endophenotype in psychiatry to allow it to 
include transdiagnostic traits that may be shared across 
several disorders [42]. ANKS1B was implicated through 
the association between the marker psy_rs10860381 
and social responsiveness in the maternal POE test. This 
gene encodes an activity dependent postsynaptic effec-
tor protein highly expressed in the brain, and it has been 
implicated in a wide array of neurodevelopmental phe-
notypes [89]. Importantly, haploinsufficiency of this gene 
in a mouse model resulted in impaired social interaction 
and sensorimotor dysfunction, which are core features of 
autism spectrum disorder [90]. Even more importantly, 
this gene exhibits allelic expression imbalance in the 
brain, which could be an outcome of genomic imprinting 
(which could result in a POE), although this is only one 
possible explanation [89]. SYNE1 was implicated through 
the associations between several markers and process-
ing speed (WISC Symbol Search) in the general test. The 
gene encodes a protein that is involved in anchoring spe-
cialized myonuclei underneath neuromuscular junctions, 
but it is also expressed in the brain—predominantly in 
the cerebellum [91]. It has been implicated in a recessive 
form of cerebellar ataxia, which may also include cogni-
tive deficits [91]. Interestingly, individuals with SYNE1 
mutations exhibit processing speed deficits compared 
with controls [92], which is in line with our result show-
ing association between this gene and processing speed 
in the general test. Both SYNE1 and TGM3 have been 
highlighted in a study of de novo mutations in autism 
spectrum disorder [93].

Some of the other associations in Table  2 are also 
of note. The paternal POE association between social 
responsiveness and rs191695175 was the most sig-
nificant association in our study. The minor allele 
frequency for this marker was very low at ~ 0.01 (in 
founders), which could lead to a biased effect size. 
However, this marker is found on chromosome 8 in 
chromosomal band 8q24.13, a locus which was part 
of a suggestive linkage peak for the same trait, namely, 
SRS, in a genome-wide linkage study [13]. The same 
locus also showed linkage to SRS in addition to an anxi-
ety score and a score for pragmatic language skills, in 
another study [94]. These studies, however, did not 
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model POEs. Thus, even though we may not be able to 
trust the estimated effect size for this locus, the asso-
ciation itself might be valid and supported by previ-
ous studies, and it is possible that the POE, if it indeed 
operates at this locus, contributed to the stronger signal 
in this study as compared with previous studies. There 
have been other previous studies which included similar 
phenotypes, such as social interaction and social com-
munication (neither was measured with the SRS), but 
they did not model POEs, and their significant results 
do not overlap with ours [95, 96]. We also observe an 
interesting association trend with marker rs11784069: 
allele T, when inherited from the mother, is associated 
with a higher WISC Arithmetic score (better work-
ing memory functions), but, when inherited from the 
father, it is associated with a lower score (Table 2). This 
is an illustration of the phenomenon mentioned in the 
introduction, namely, opposite POEs of different paren-
tal types at the same locus, which has been observed 
for other quantitative traits in humans. This marker is 
a highly significant eQTL for MYOM2 on eQTLGen 
(P = 3.2717 ×  10–310) and GTEx (P = 9.5 ×  10–20) in 
whole blood. Interestingly, the mouse ortholog of this 
gene, Myom2, was significantly upregulated and had 
the fifth largest fold change among upregulated genes 
in the hippocampus of memory-enhanced mice in one 
study [97], which is relevant for the association in our 
study, as the WISC Arithmetic score is a measure of 
working memory.

The top results in the context of endophenotypes 
and the investigated domains
The traits implicated by the top results in our study, 
namely, SRS (social responsiveness) and WISC Arith-
metic (working memory), had been proposed as endo-
phenotypes for ASD and ADHD, respectively [13, 
98–100]. However, these studies did not identify links 
between specific genes and these endophenotypes at 
a genome-wide significant level; they focused on link-
age analyses or candidate genes, and, where association 
was modeled, it was only suggestive. Thus, our study 
provides genetic evidence for the missing piece in the 
pathway from gene to disorder through endophenotype, 
namely: TGM3  →  working memory  →  ADHD and 
CACNB4 →  social responsiveness → ASD, through the 
top genetic associations we identified. Similarly, memory 
impairments, including verbal working memory impair-
ment, are common feature of schizophrenia  [101], sug-
gesting further pathways between TGM3, CSMD1 and 
PTPRA and schizophrenia through the working memory 
endophenotype.  The highlighted associations in Table  2 
belong to the neurocognitive and social-behavioral 

domains. This does not mean that traits from the other 
domains would not make good endophenotypes; our 
study did not examine that, and the lack of genetic asso-
ciation could result from lower heritability for those 
traits and/or insufficient sample sizes.

Limitations of our study
Our results should be evaluated in the light of several 
potential limitations. Firstly, our study sample was a 
family-based sample, and, as such, not a very large one. 
While this has the advantage of our being able to have 
a deeply phenotyped sample, it can be detrimental to 
genetic association studies. While, as shown in previous 
simulations studies of QTDT models, our sample should 
be large enough to detect some effects, it is to expected 
that only strong effects could be detected in our sample, 
which can explain why the majority of our genome-wide 
significant associations were intragenic. It should also be 
emphasized that some of the effect sizes could be over-
estimated due to confounding. As it is difficult to deter-
mine the appropriateness of the adjustment for high risk 
status, it should be borne in mind that the effects for 
some associations might not be accurate. However, since 
the GWASs were performed with the goal of discovering 
new genetic associations for downstream analyses and 
not for estimating their effects, we adopted this approach 
rather than potentially over-adjust the models, as dis-
cussed earlier. Another limitation is that we did not have 
a suitable replication sample which included the same 
phenotypes and genetic data from children and parents. 
Although our candidate genes have been highlighted in 
previous studies of related traits, providing more cred-
ibility to their association with our traits, the associations 
with specific variants need to be replicated in an inde-
pendent sample.

Future perspectives
It has been shown that the heritability of cognitive abil-
ity increases from childhood to young adulthood [102]. 
Interestingly, a similar trend (reaching its peak around 
age of 13 for girls and 14 for boys) was observed for 
height [103]. When the proportion of phenotypic vari-
ance explained by genetics increases, the proportion of 
the variance explained by the environment decreases, and 
vice versa. In the case of height, this trend could reflect 
the effect of early childhood living conditions and/or pre-
natal environmental factors [103]. For cognitive ability, 
the authors theorize that this trend could be a result of 
genotype-environment correlation, whereby their genet-
ics influences children increasingly in selecting, modify-
ing and creating their own experiences as they grow up 
[102]. From the statistical genetic perspective, a higher 
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heritability means that more genetic associations could 
be identified if the sample of children were studied when 
they are older; this could mean that repeating the analy-
ses within the VIA sample with these functions measured 
in early adulthood could result in further associations. 
Furthermore, functional studies of the genes highlighted 
in our study could provide further insight into the molec-
ular etiologies of the neurodevelopmental disorders 
whose endophenotypes were investigated in this study.

Conclusions
Our study identified several candidate genes for social-
behavioral and neurocognitive functions, implicated 
either through a general test, or a test of POEs; asso-
ciations in the latter test were also supported by exter-
nal studies which had identified methylation or histone 
modification sites associated with the relevant marker. 
Importantly, most of our genome-wide significant asso-
ciations were within protein-coding genes, and many of 
these had previously been implicated in studies of related 
traits and disorders, although many of these previous 
associations were with rare and/or deleterious muta-
tions. Our study provides further evidence to the effect 
that common variants may influence related traits in 
individuals not diagnosed with severe mental disorders, 
and it further supports a role for the highlighted genes in 
the studied traits, which can be seen as a replication of 
those genes’ implications in the previous studies. We did 
not identify significant associations for traits in some of 
the other functions/domains included in this study; this 
could be the result of the lower heritability of those traits, 
as well as potentially smaller effects that could not be dis-
covered in the VIA sample. Our results also illustrate the 
usefulness of modeling POEs in human genetic studies, 
and, while previous studies focused on an array of quan-
titative non-social-cognitive, non-social-behavioral, and 
non-neurocognitive traits, our study highlights the pres-
ence of potential POEs in several of these traits studied in 
a systematic way, thus providing further evidence for this 
phenomenon in humans.
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