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Abstract
Background: Methylphenidate (MPH) is the classic treatment for Attention Deficit Hyperactivity
Disorder (ADHD), yet the mechanisms underlying its therapeutic actions remain unclear. Recent
studies have identified an oral, MPH dose regimen which when given to rats produces drug plasma
levels similar to those measured in humans. The current study examined the effects of these low,
orally-administered doses of MPH in rats performing a delayed alternation task dependent on
prefrontal cortex (PFC), a brain region that is dysfunctional in ADHD, and is highly sensitive to
levels of catecholamines. The receptor mechanisms underlying the enhancing effects of MPH were
explored by challenging the MPH response with the noradrenergic α2 adrenoceptor antagonist,
idazoxan, and the dopamine D1 antagonist, SCH23390.

Results: MPH produced an inverted U dose response whereby moderate doses (1.0–2.0 mg/kg,
p.o.) significantly improved delayed alternation performance, while higher doses (2.0–3.0 mg/kg,
p.o.) produced perseverative errors in many animals. The enhancing effects of MPH were blocked
by co-administration of either the α2 adrenoceptor antagonist, idazoxan, or the dopamine D1
antagonist, SCH23390, in doses that had no effect on their own.

Conclusion: The administration of low, oral doses of MPH to rats has effects on PFC cognitive
function similar to those seen in humans and patients with ADHD. The rat can thus be used as a
model for examination of neural mechanisms underlying the therapeutic effects of MPH on
executive functions in humans. The efficacy of idazoxan and SCH23390 in reversing the beneficial
effects of MPH indicate that both noradrenergic α2 adrenoceptor and dopamine D1 receptor
stimulation contribute to cognitive-enhancing effects of MPH.

Background
Methylphenidate (MPH) is a leading treatment for Atten-
tion Deficit Hyperactivity Disorder (ADHD). Although
this compound has been used for decades, the neural
mechanisms underlying MPH's therapeutic actions are

still unknown. Recent advances in our understanding of
the neurobiology of ADHD, and the identification of
appropriate MPH doses for use in rodents, now allow the
examination of therapeutic actions in animals.

Published: 22 April 2005

Behavioral and Brain Functions 2005, 1:2 doi:10.1186/1744-9081-1-2

Received: 13 February 2005
Accepted: 22 April 2005

This article is available from: http://www.behavioralandbrainfunctions.com/content/1/1/2

© 2005 Arnsten and Dudley; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.behavioralandbrainfunctions.com/content/1/1/2
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Behavioral and Brain Functions 2005, 1:2 http://www.behavioralandbrainfunctions.com/content/1/1/2
Converging evidence has demonstrated that ADHD symp-
toms arise from dysregulation of prefrontal cortical
(PFC)/striatal and cerebellar circuits (reviewed in [1]. The
PFC uses working memory to guide behavior and atten-
tion, inhibiting inappropriate responses and sustaining
attention over long delays, particularly under conditions
of interference from distractors [2,3]. Deficits in PFC func-
tion lead to poor impulse control, distractibility, hyperac-
tivity, forgetfulness and poor organization and planning
[4]. There is general agreement that ADHD involves weak-
ened PFC function e.g. [5], and speculation that medica-
tions might strengthen PFC abilities. Imaging studies have
shown that MPH produces more efficient PFC function in
both ADHD patients [6] and control subjects [7], consist-
ent with this view.

Many researchers have assumed that MPH acts by block-
ing dopamine (DA) transporters (reviewed in [8]).
Indeed, elegant PET imaging studies of DA transporter
occupancy in striatum have shown that MPH acts at this
site [9]. However, the striatum contains very few
noradrenergic (NE) transporters, and thus the important
actions of MPH on the NE system have received far less
attention. At the present time, imaging studies are unable
to reliably visualize the low levels of NE and DA actions
in cortex, although there is the suggestion that there may
be fewer catecholamine terminals in the PFC of adults
with ADHD [10]. Thus, animal studies are of particular
importance for understanding MPH actions in PFC.

Recent animal studies by Kuzcenski and Segal [11] have
identified the low, oral doses of MPH which 1) produce
plasma levels in rats similar to those observed in children
taking MPH, and 2) decrease locomotor activity in rats
just as they do in humans. Oral administration was key, as
MPH administration by injection produces much higher
blood and brain MPH levels [12]. Prior to appreciation of
this research, MPH doses in rat studies were generally too
high, and were usually administered by injection, produc-
ing kinetics and drug levels relevant to drug abuse but not
to ADHD e.g. [13-15]. These injected, effectively higher
doses produce locomotor hyperactivity with stimulant
treatment e.g. [16,17], and it has been assumed that there
were species differences that would impede research.
Thus, the identification of the appropriate dose regimen
for MPH treatment in rats opens a new field of research
that may more quickly elucidate MPH therapeutic
mechanisms.

Although previous research focused on MPH amplifica-
tion of DA actions, more recent biochemical studies using
low doses of MPH show more potent effects on hippoc-
ampal NE than on striatal DA [18], while increasing both
DA and NE release in the PFC ([19] and C.W. Berridge,
personal communication). Both NE and DA have a critical

influence on PFC cognitive functioning. NE improves
working memory, response inhibition and lessens dis-
tractibility through actions at post-synaptic α2A adreno-
ceptors in the PFC, while DA improves working memory
through modest stimulation of D1 receptors in PFC
(reviewed in [20,21]). Although optimal levels of NE and
DA are essential to proper PFC function, very high levels
of NE and DA release, e.g. during stress, impair PFC func-
tion through α1, beta-1, D1 and possibly D4 receptors
[22].

The current study characterized the effects of low, oral
doses of MPH on PFC function in rats. Rats were tested on
a working memory task, spatial delayed alternation, a
classic test of PFC function in rodents [23]. MPH was
found to have effects similar to those observed in patients:
improving performance at moderate doses but producing
perseverative errors at high doses. The second part of the
study examined whether NE α2A adrenoceptor and/or DA
D1 receptor actions contributed to the enhancing effects
of MPH on PFC function.

Results
MPH dose/response: Effects on delayed alternation 
performance
The effects of an acute, oral dose of MPH were examined
over the dose range found to produce drug plasma levels
in rats similar to clinical use in ADHD (0.5, 1.0, 1.5, 2.0
and 3.0 mg/kg, oral administration 30 min before test-
ing). MPH produced an inverted U dose response curve
whereby the middle doses (1.0, 1.5, 2.0 mg/kg) generally
improved performance, while higher doses (2.0, 3.0 mg/
kg) often impaired performance. Representative dose/
response curves are shown in Figure 1A. There were indi-
vidual differences in MPH dose sensitivity that may result
from differences in MPH absorption from the gastrointes-
tinal tract, and/or variations in endogenous catecho-
lamine levels in PFC circuits. For all animals, a dose was
found between 1.0–2.0 mg/kg that significantly improved
delayed alternation performance (Figure 1B; vehicle vs.
MPH p = 0.002, df = 7). No change in response time was
noted (mean ± SEM vehicle: 191.2 ± 39.1 sec; mean ± SEM
MPH: 179.3 ± 30.3 sec; p > 0.7, df = 7). These enhancing
doses were used in subsequent experiments to examine
the receptor actions contributing to MPH therapeutic
actions.

Six of the eight rats tested showed impairment in delayed
alternation performance as the dose was raised (1.5–3
mg/kg, especially following 2–3 mg/kg). The number of
perseverative errors significantly increased at these higher
doses, as measured by the greatest number of consecutive
entries into a single arm (Figure 1C; p < 0.05, df = 5). A
perseverative response pattern is consistent with PFC dys-
function. No consistent change in response time was
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observed following higher, impairing doses of MPH,
although some animals were faster and some slower than
usual (mean ± SEM vehicle: 201.4 ± 46.2 sec; mean ± SEM
MPH: 194.2 ± 107.2 sec; range vehicle: 91–398 sec; range

MPH: 50–675 sec). No stereotyped behaviors, common at
much higher doses, were observed in these animals. Thus,
cognitive choices, but not behavior per se, showed a per-
severative profile.

The effects of oral administration of methylphenidate (MPH) on delayed alternation performance in male ratsFigure 1
The effects of oral administration of methylphenidate (MPH) on delayed alternation performance in male rats. A. Representa-
tive dose/response curves from two individual rats. Results represent percent correct on the delayed alternation task following 
MPH administration. For most rats, a lower dose (1.0–2.0 mg/kg, p.o. 30 min) was found to improve performance, while higher 
doses often impaired performance (1.5–3.0 mg/kg). Rats showed individual differences in dose sensitivity. B. An optimal dose 
of MPH was found for all rats which significantly improved delayed alternation performance. Results represent mean ± S.E.M. 
percent correct on the delayed alternation task. VEH = cracker vehicle; MPH = optimal dose of methylphenidate (1.0–2.0 mg/
kg); ** significantly different from VEH p = 0.002. C. Higher doses of MPH impaired performance and produced a perseverative 
pattern of errors. Perseveration was assessed by the greatest number of consecutive entries into a single arm of the T maze. 
Results represent mean ± S.E.M. number of consecutive entries. VEH = cracker vehicle; MPH = impairing dose of methylpheni-
date (1.5–3.0 mg/kg); * significantly different from VEH p = 0.046.
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The role of α2 adrenoceptor mechanisms in the cognitive 
enhancing effects of MPH
The α2 adrenoceptor antagonist, idazoxan, was co-admin-
istered with MPH to test whether MPH enhances
performance by facilitating endogenous NE stimulation
of α2 adrenoceptors (n = 5). The optimal dose of MPH
was selected for each animal; a dose of idazoxan was
selected (0.1 mg/kg) that had no effects on its own. As
shown in Figure 2, idazoxan significantly reversed the
enhancing effects of MPH. Two way analysis of variance
with repeated measures (2-ANOVA-R) showed a signifi-
cant effect of MPH (F(1,4) = 18.45, p = 0.01), a trend
toward significant effect of idazoxan (F(1,4) = 6.63, p =
0.06), and a significant interaction between the two drugs
(F(1,4) = 27.2, p = 0.006). User defined contrasts showed
that MPH+vehicle significantly improved performance
compared to vehicle+vehicle (F(1,4) = 53.3, p = 0.002),
while idazoxan+vehicle was not significantly different
than vehicle+vehicle (F(1,4) = 0.02 p = 0.90). Most
importantly, animals performed significantly lower on
the delayed alternation task following MPH+idazoxan
treatment than when they were administered MPH+vehi-
cle (F(1,4) = 43.4, p = 0.0028), and were not significantly
different in their performance from days in which they
were administered vehicle+vehicle (F(1,4) = 0.005 p =
0.95). These results are consistent with α2 adrenoceptor
actions contributing to the enhancing effects of oral MPH.

The role of DA D1 receptor mechanisms in the cognitive 
enhancing effects of MPH
The DA D1 receptor antagonist, SCH23390, was co-
administered with MPH to test whether MPH enhances
performance by facilitating endogenous DA stimulation
of D1 receptors (n = 7). A dose of 0.1 mg/kg SCH23390
was used, unless this dose produced impairment on its
own. In these cases, the dose of SCH23390 was lowered to
0.01 mg/kg (n = 3). SCH23390 significantly reduced the
enhancing effects of MPH on delayed alternation
performance (Figure 3). 2-ANOVA-R showed a significant
effect of MPH, a significant effect of SCH23390, and a sig-
nificant interaction between the two drugs (effect of MPH:
F(1,6) = 11.59, p = 0.014; effect of SCH23390: F(1,6) =
9.3, p = 0.023; interaction between MPH and SCH23390:
F(1,6) = 9.3, p = 0.023). User defined contrasts showed
that MPH+vehicle significantly improved performance
compared to vehicle+vehicle (F(1,6) = 61.45, p = 0.0002),
while SCH23390+vehicle was not significantly different
than vehicle+vehicle (F(1,6) = 0.0, p = 1.0). Animals per-
formed significantly worse on the delayed alternation task
following MPH+SCH23390 treatment than when they
were administered MPH+vehicle (F(1,6) = 15.0, p =
0.008). Although performance remained a bit above vehi-
cle levels of response, performance following
MPH+SCH23390 treatment was not significantly differ-
ent than following vehicle+vehicle (F(1,6) = 0.84, p =

The enhancing effects of methylphenidate were blocked by co-administration of the α2 adrenoceptor antagonist, ida-zoxan at a dose which had no effect on its ownFigure 2
The enhancing effects of methylphenidate were blocked by 
co-administration of the α2 adrenoceptor antagonist, ida-
zoxan at a dose which had no effect on its own. Results rep-
resent mean ± S.E.M. percent correct on the delayed 
alternation task. VEH = cracker vehicle; MPH = optimal dose 
of methylphenidate (1.0–2.0 mg/kg); IDA = idazoxan (0.1 mg/
kg); ** significantly different from VEH, p = 0.002; † signifi-
cantly different from MPH, p = 0.003.

The enhancing effects of methylphenidate were blocked by co-administration of the dopamine D1 receptor antagonist, SCH23390 at doses which had no effect on their ownFigure 3
The enhancing effects of methylphenidate were blocked by 
co-administration of the dopamine D1 receptor antagonist, 
SCH23390 at doses which had no effect on their own. 
Results represent mean ± S.E.M. percent correct on the 
delayed alternation task. VEH = cracker vehicle; MPH = opti-
mal dose of methylphenidate (1.0–3.0 mg/kg); SCH = 
SCH23390 (0.01 or 0.1 mg/kg); ** significantly different from 
VEH p = 0.0002; † significantly different from MPH, p = 
0.008.
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0.4). These results are consistent with D1 receptor actions
contributing to the enhancing effects of oral MPH.

Discussion
The current study provides the first evidence that oral dos-
ing of therapeutically relevant levels of MPH improves
PFC cognitive function in rats. This same dose regimen
has been found to decrease locomotor activity in rats,
reinforcing the idea that rats can be used as an appropriate
animal model for examining medications used to treat
ADHD patients.

Performance of the spatial delayed alternation task in a T
maze is very relevant to many aspects of ADHD. Optimal
performance of this task requires spatial working memory
(remembering which side was most recently entered),
response inhibition (inhibiting the tendency to return to
the location where the animal was last rewarded) and the
ability to sustain attention and suppress the distractions
of being put into the start box. Thus, the delayed alterna-
tion task assesses many of the PFC operations that are
known to be problematic in ADHD.

The current study found that moderate doses of MPH pro-
duced a highly significant improvement in delayed alter-
nation performance. This improvement likely reflects
enhanced PFC cognitive performance, as there were no
changes in response time characteristic of motor or
motivational changes. Indeed, given that MPH reduces
eating, it is unlikely that simple changes in motivation for
food reward could account for the improvement in
performance.

It is also noteworthy that higher doses of MPH impaired
delayed alternation performance in a large subset of ani-
mals. This impairment manifested in a perseverative pro-
file of errors in which the rats continued to choose the
same incorrect arm of the maze. Perseveration is also seen
with 1) PFC lesions [23-26], 2) infusion of a high dose of
a DA D1 or NE α1 agonist into the PFC [27,28], or 3)
stress exposure, which causes high levels of NE and DA
release in PFC [29]. Future studies will be needed to deter-
mine whether higher doses of MPH impair delayed alter-
nation performance due to excessive catecholamine
release in PFC, and if so, which receptor(s) underlie these
impairing actions.

Comparison to cognitive effects of MPH in humans
The MPH profile observed in rats in the current study is
very similar to that in seen in humans. Oral administra-
tion of clinical doses of MPH have been found to improve
spatial working memory, response inhibition, set-shifting
and other PFC cognitive functions in both "normal" col-
lege students [30] and in children and adults with ADHD
[31-35]. Imaging studies have shown more efficient dor-

solateral PFC activity (BOLD) following MPH doses that
improve spatial working memory, consistent with
improved PFC cognitive function [36]. Interestingly, in
adults with ADHD, childhood ratings of ADHD (both
self-reported and informant ratings) correlated with
response to methylphenidate on the spatial working
memory task [35]. Thus, studies of spatial working mem-
ory performance are likely very relevant to the therapeutic
effects of ADHD medications.

In the current study, higher doses of MPH impaired spa-
tial working memory performance in a large number of
animals. These findings are consistent with the original
Lyon-Robbins analysis of stimulant actions in rodents
that found increasingly perseverative responses with
increasing dose of stimulant administration [37]. It is
noteworthy that these "higher" doses are still much lower
than those used in most other rodent studies, accentuat-
ing the fact that previous research in animals has often
focused on MPH doses that are too high. Similar to our
findings in rats, clinicians are often concerned that higher
doses of MPH can induce perseverative thinking in
patients e.g. [37,38]. For example, higher doses of MPH
(e.g. 1.0 mg/kg) can increase perseverative errors on the
Wisconsin Card Sorting Task when the test is novel
[39,40]. Perseverative errors were not increased, and
indeed were reduced by MPH, when the Wisconsin Card
Sorting Task was given repeatedly [41]; however, this con-
dition minimizes the need for flexible thinking, as the
switching rule is "discovered" only during the first experi-
ence of the task. Douglas et al. also found no evidence of
perseveration on other tasks, such as the Trails B, and con-
cluded that doses below 0.9 mg/kg produced dose-related
improvements in cognitive flexibility. As repeated daily
doses can add together, they cautioned that doses above
0.6 mg/kg were not recommended. Thus, under optimal
dosage conditions, MPH appears to improve flexible
thinking in patients, but higher doses may produce a per-
severative profile similar to that seen in rodents.

Receptor mechanisms underlying PFC cognitive enhancing 
effects of MPH
The identification of an MPH dose regimen that improves
PFC cognitive performance in rats provides the opportu-
nity to examine the neural mechanisms underlying MPH
therapeutic actions. The current study began by examining
the role of NE α2 and DA D1 receptors, given the impor-
tance of these receptors to PFC cognitive function. The
study found that both the α2 antagonist, idazoxan, and
the D1 antagonist, SCH23390, reversed the cognitive-
enhancing effects of MPH. Care was taken to use antago-
nist doses that did not impair performance on their own;
thus, additive effects of drug treatment cannot account for
the normalization of response. Rather, the data are con-
sistent with MPH improving performance by increasing
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the availability of NE and DA, which in turn stimulate α2
and D1 receptors. It is interesting that either idazoxan or
SCH23390 was fully effective in reversing the MPH
response. These data suggest that there may be beneficial
interactions between these receptors, an area that has
received little investigation.

Future studies will be needed to determine whether the
enhancing effects of MPH occur in the PFC and/or else-
where in the brain. Low, systemic doses of MPH and
amphetamine are known to increase both NE and DA lev-
els in the rat PFC while having more subtle effects in stri-
atal regions ([19], and C.W. Berridge, personal
communication). There are relatively low levels of DA
transporters in the PFC [42]; thus the increase in both DA
and NE levels likely occurs through blockade of NE trans-
porters, which are thought to transport both NE and DA
in the PFC [42].

The efficacy of idazoxan and SCH23390 in reversing the
MPH response in the current study is not unexpected,
given the importance of α2 and D1 receptor actions to
PFC cognitive function. Catecholamine depletion in PFC
produces working memory deficits as severe as ablation of
the tissue itself [43], and D1 receptor blockade similarly
weakens working memory regulation of behavior [44,45].
In the current study, D1 blockade did not appear as com-
pletely effective as α2 receptor blockade, although both
antagonists weakened the improvement such that it was
statistically insignificant from vehicle. The potentially
weaker effects with SCH23390 may be due to the lower
dose used in some animals, and the difficulties in dealing
with an inverted U dose response, where either too little
or too much D1 receptor stimulation can impair perform-
ance. Under these conditions it is difficult to identify the
correct dose of antagonist to perfectly normalize behavior.
Individual variability in response to SCH23390 may arise
from differences in endogenous D1 receptor stimulation
under basal conditions. For example, D1 agonists have
been shown to enhance attentional control in rats when
infused into the PFC, but only in animals that were per-
forming relatively poorly under basal conditions [46]. D1
receptors also play a key role in striatal function, and it is
possible that these actions outside the PFC also contrib-
uted to the enhancing effects of MPH on the delayed alter-
nation task.

With some notable exceptions [47,48], much of the
ADHD field has focused on DA mechanisms in ADHD
[49]. In turn, there has been intensive focus on the DA
actions of MPH, with some researchers even referring to
MPH as a selective DA transporter blocker. The current
data, in addition to recent biochemical studies [11,18,50]
caution that the NE actions of stimulants such as MPH are
just as important as the DA effects. This point is accentu-

ated by the findings that one can recreate the symptoms of
ADHD- increased locomotor activity, poor impulse con-
trol and weakened working memory/distractibility- by
blocking α2 adrenoceptors with yohimbine infusions in
the monkey PFC [51-53], respectively. Yohimbine also
reduces the delay-related activity of PFC neurons, the cel-
lular measure of working memory and response
inhibition [54]. Conversely, the α2 agonist, guanfacine,
has been shown to strengthen working memory [55,56],
reduce distractibility [57], improve response inhibition
[58-60], and increase regional cerebral blood flow in
monkey PFC [61]. Most recently, guanfacine has been
shown to reduce locomotor hyperactivity and improve
attentional control in the spontaneously hypertensive rat,
a rodent model of ADHD (T. Sagvolden, personal com-
munication). Experiments are in progress to determine
whether MPH loses efficacy in mice with a functional
knockout of the α2A adrenoceptor. The current results
with idazoxan indicate that at least some of the beneficial
effects of MPH arise from NE stimulation of α2
adrenoceptors.

Relevance to medications used to treat ADHD
Many of the medications used to treat ADHD increase
endogenous NE stimulation of α2 adrenoceptors or
mimic NE by directly stimulating these receptors. For
example, like MPH, atomoxetine (Strattera) and amphet-
amine (Adderall) increase NE as well as DA in the PFC of
rats [19,42]. NE reuptake blockers have been shown to be
very efficacious in treating ADHD symptoms, although
their cardiac side effects have limited clinical utility in
children [47,62]. Future studies will need to examine
whether low, oral doses of amphetamine and atomoxet-
ine, like MPH, can improve delayed alternation perform-
ance in rats. Guanfacine mimics NE at α2 adrenoceptors,
and is now in common use for the treatment of ADHD,
especially in patients with tic disorders or drug abuse lia-
bility who cannot take stimulant medications [63]. Guan-
facine has been shown to improve spatial working
memory performance in mice [64], rats [65], monkeys
[55,66] and humans [67]. Thus, there is an excellent cor-
respondance between drug effects in the laboratory and
clinical efficacy in ADHD. The identification of an appro-
priate MPH dose regimen for use in rats should help in the
development of safer and more effective medications for
the treatment of ADHD.

Conclusion
Low, orally-administered doses of MPH improve spatial
working memory performance in rats, while higher doses
often impair performance and induce perseverative errors.
Both NE α2 adrenoceptor and DA D1 receptor stimula-
tion contribute to the enhancing effects of MPH on work-
ing memory in rodents. Future studies with low, oral
doses of MPH may continue to elucidate the mechanisms
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underlying the therapeutic actions of MPH in treating
ADHD.

Methods
Animals
Young adult (240–260 g) male rats were purchased from
Taconic (Germantown, NY) and singly-housed in filter
frame cages. Animals were kept on a 12 hr light/dark cycle,
and experiments were conducted during the light phase.
Rats were slowly habituated to a restricted diet (16 gm/
day per rat) of autoclaved Purina (St. Louis, MO) rat chow
during the first two weeks. Food was given immediately
after behavioral testing and water was available ad libitum.
Rats were weighed weekly to confirm normal weight gain.
Food rewards during cognitive testing were highly palata-
ble miniature chocolate chips. Rats were assigned a single
experimenter who handled them extensively before
behavioral testing.

Cognitive assessment
Rats were habituated to a T-maze (dimensions, 90 × 65
cm) until they were readily eating chocolate chips placed
at the end of each arm and were acclimated to handling.
After habituation, rats were trained on the delayed alter-
nation task. On the first trial, animals were rewarded for
entering either arm. Thereafter, for a total of 10 trials per
session, rats were rewarded only if they entered the maze
arm that was not previously chosen. Between trials the
choice point was wiped with alcohol to remove any olfac-
tory clues. The delay between trials started at "0" sec (i.e.
about 1.5 sec, minimum possible for delayed alternation)
and was subsequently raised in 5 sec intervals as needed
to maintain performance at about 70% correct. Animals
were scored for accuracy (arm chosen) and response time
for each trial.

Drug administration
The experimenter testing the animal was unaware of drug
treatment conditions. Given the need for oral administra-
tion of drug, rats were habituated to eating a small piece
of cracker. All animals had learned to ingest the cracker
rapidly and completely prior to the initiation of drug
testing.

MPH was acquired from the National Institute of Drug
Abuse. Doses were based on those identified by Kuzcenski
and Segal [11]. MPH was dissolved in tap water and
injected onto a small piece of Saltine cracker that was fed
to the rat 30 min before cognitive testing. The doses exam-
ined were: 0 (water only), 0.5, 1.0, 1.5, 2.0, and 3.0 mg/
kg). For example, the 1.0 mg/kg dose was made by dis-
solving 1 mg MPH in1 ml water and injecting a volume
equivalent to the weight of the rat, e.g. a 450 g rat would
receive 0.45 ml injected onto the cracker. Animals rapidly
ate the cracker once habituated to the procedure. Doses

were administered in random order with the exception
that no animal began with the 3.0 mg/kg dosage.

Idazoxan was purchased from Sigma (St. Louis, MO) and
administereed at a dose of 0.1 mg/kg. Idazoxan was dis-
solved in saline, and like MPH, was injected into the
cracker for oral administration.

SCH23390 also was purchased from Sigma and dissolved
in saline. SCH23390 was initially administered in a dose
of 0.1 mg/kg. Animals who were impaired by this dose
were subsequently administered 0.01 mg/kg SCH23390
so that additive effects could not account for MPH
reversal.

Data analysis
The dependent variables were percent correct on the
delayed alternation task (accuracy), response time, and
greatest number of consecutive entries into an incorrect
arm (perseveration score). Statistical comparisons utilized
within subjects designs; simple comparisons utilized
paired (dependent) T tests. The effects of idazoxan or
SCH23390 on the MPH response were analyzed with a
two-way analysis of variance with repeated measures with
factors of 1) MPH and 2) antagonist, and user defined
contrasts to test pairwise comparisons.
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